board unused devices. Moreover the possibility to op-
tionally expand the number of input channels by plug-
ging in an additional acquisition module and the intro-
ducing of on-board data storage capabilities might be
considered. Finally, a custom chip solution for sig-
nal conditioning and converting will might be investi-
gated to further reduce both power consumption and
system dimensions.
Figure 12: EEG recorded signal with teeth-grinding arti-
facts.
Figure 13: EEG recorded signal with eyes-blinking arti-
facts.
ACKNOWLEDGEMENTS
The authors would like to thank Dr. Matteo Fraschini
and Matteo Demuru from the University of Cagliari
for their support on EEG recording in-vivo experi-
ments. L. Bisoni gratefully acknowledges Sardinia
Regional Government for the financial support of his
PhD scholarship (P.O.R. Sardegna F.S.E. Operational
Programme of the Autonomous Region of Sardinia,
European Social Fund 2007-2013 - Axis IV Human
Resources, Objective l.3, Line of Activity l.3.1.).
REFERENCES
A. Riera, S. Dunne, I. C. G. R. (2008). Starfast: a wireless
wearable eeg/ecg biometric system based on the eno-
bio sensor. Proceedings of the International Workshop
on Wearable Micro and Nanosystems for Personalised
Health (pHealth08).
Alonso J., Angermeyer MC., B. S. e. a. (2004). Prevalence
of mental disorders in europe: results from the euro-
pean study of the epidemiology of mental disorders
(esemed) project. Acta Psychiatrica Scandinavica,
109:21–27.
Brown L., Van de Molengraft J., Y. R. T. T. e. a. (2010). A
low-power, wireless, 8-channel eeg monitoring head-
set. Engineering in Medicine and Biology Society
(EMBC), 32
n
d Annual International Conference of
the IEEE EMBS:4197–4200.
Carmo J.P., Dias N.S., S.H.M.P. e. a. (2007). A 2.4-ghz low-
power/low-voltage wireless plug-and-play module for
eeg applications. Sensors Journal,7:1524–1531.
Chan S.R., Torous J., H. L. and P., Y. (2014). Mobile tele-
mental health: Increasing applications and a move to
hybrid models of care. Healthcare, 2(2):220–233.
El Khaddar, M., Harroud, H., Boulmalf, M., ElKoutbi, M.,
and Habbani, A. (2012). Emerging wireless technolo-
gies in e-health trends, challenges, and framework
design issues. Multimedia Computing and Systems
(ICMCS), 2012 International Conference on, pages
440–445.
Emotiv (2013). http://emotiv.com.
J. Olesen, A. Gustavsson, M. S. H.-U. W. e. a. (2012). The
economic cost of brain disorders in europe. European
Journal of Neurology, 19:155–162.
Lin, C.-T., Ko, L.-W., Chiou, J.-C., Duann, J.-R., Huang,
R.-S., Liang, S.-F., Chiu, T.-W., and Jung, T.-P.
(2008). Noninvasive neural prostheses using mo-
bile and wireless eeg. Proceedings of the IEEE,
96(7):1167–1183.
Lupu, C. and Cosmin-Constantin, M. (2013). Actual
portable devices as base for telemedicine and e-health:
Research and case study application. E-Health and
Bioengineering Conference (EHB), 2013, pages 1–4.
Micromed (2014). Brain quick. http://www.micromed.eu.
Mihajlovic, V., Grundlehner, B., Vullers, R., and Penders, J.
(2014). Wearable, wireless eeg solutions in daily life
applications: What are we missing? Biomedical and
Health Informatics, IEEE Journal of, PP(99):1–1.
NeuroSky (2009). http://neurosky.com.
Patki, S., Grundlehner, B., Verwegen, A., Mitra, S., Xu,
J., Matsumoto, A., Yazicioglu, R., and Penders, J.
(2012). Wireless eeg system with real time impedance
monitoring and active electrodes. Biomedical Circuits
and Systems Conference (BioCAS), 2012 IEEE, pages
108–111.
Quasar (2013). http://www.quasarusa.com.
Sapal Tachakra, X.H. Wang, R. S. I. and Song, Y.
(2003). Mobile e-health: The unwired evolution of
telemedicine. Telemedicine Journal and e-Health,
9(3):247–257.
Smith, A. (2013). Smartphone ownership 2013.
Pew Research Center, http://www.pewinternet.org
/2013/06/05/smartphone-ownership-2013/.
Waterhouse, E. (2003). New horizons in ambulatory elec-
troencephalography. Engineering in Medicine and Bi-
ology Magazine, 22:74–80.
BIODEVICES2015-InternationalConferenceonBiomedicalElectronicsandDevices
36