5 CONCLUSIONS
We proposed a video saliency detection method
based on using SVM to learn weights for combining
features represented by superpixel clusters. The
process of combining features in the new algorithm
performs better than any individual feature. The
saliency flow from a video sequence generates a
better saliency map than single frame maps. We
compared our new method to other state-of-the-art
methods using publically available data sets and
showed that the new method has better performance.
The reported result is the first known application of
temporal superpixels for video saliency detection.
Our ongoing work is in visual tracking, in which we
find the most salient object along with temporal
linkage. The saliency map with salient objects can
also be used to guide video segmentation.
ACKNOWLEDGMENTS
The authors thank the reviewers whose suggestions
improved the manuscript. This work was supported
in part by the Louisiana Board of Regents through
grant no. LEQSF (2011-14)-RD-A-28.
REFERENCES
Alexe, B., Deselaers, T., and Ferrari, V., 2012. Measuring
the objectness of image windows. IEEE Transactions
on PAMI, vol. 34, no. 11, pp. 2189-2202.
Borji, A., Sihite, D.N., and Itti, L., 2012. Salient object
detection: A benchmark. In ECCV, pp. 414-429.
Chang, J., Wei, D., and Fisher, J.W., 2013. A video
representation using temporal superpixels. In IEEE
CVPR, pp. 2051-2058.
Chang Y., and Lin, C.-J., 2008. Feature ranking using
linear SVM. JMLR Workshop and Conference
Proceedings, vol. 3, pp. 53-64.
Cheng, M.-M., Zhang, G.-X., Mitra, N.J., Huang, X., and
Hu, S.-M., 2011. Global contrast based salient region
detection. In IEEE CVPR, pp.409-416.
Fukuchi, K., Miyazato, K., Kimura, A., Takagi S., and
Yamato, J., 2009. Saliency-based video segmentation
with graph cuts and sequentially updated priors.
In ICME, pp.638-641.
Goferman, S., Zelnik-Manor, L., and Tal, A., 2010.
Context-aware saliency detection. In IEEE CVPR, pp.
2376-2383.
Grundmann, M., Kwatra, V., Han, M. and Essa, I., 2010.
Efficient hierarchical graph-based video segmentation.
In IEEE CVPR, pp. 2141-2148.
Harel, J., Koch, C., and Perona, P., 2007. Graph-Based
Visual Saliency. In NIPS, pp. 545-552.
Itti L., and Baldi, P. 2005. A principled approach to
detecting surprising events in video. In IEEE CVPR,
pp. 631-637.
Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., and Li.
S., 2011. Automatic salient object segmentation based
on context and shape prior. In BMVC, pp 7
Karampatziakis, N., and Langford, J. 2010. Online
importance weight aware updates. In UAI, pp 392-399.
Koffka, K., 1955. Principles of Gestalt Psychology.
Routledge & Kegan Paul.
Mahadevan, V., and Vasconcelos, N., 2010. Spatio-
temporal saliency in dynamic scenes. IEEE
Transactions on PAMI, vol. 32, no. 1, pp. 171-177.
Mancas, M., Riche, N., Leroy, J., and Gosselin, B., 2011.
Abnormal motion selection in crowds using bottom-up
saliency. In IEEE ICIP, pp. 229-232.
Mital, P.K., Smith, T.J., Hill, R.L., and Henderson, J.M.,
2011. Clustering of gaze during dynamic scene
viewing is predicted by motion. Cognitive
Computation, vol. 3, no. 1, pp. 5-24.
Paris S., and Durand, F., 2007. A topological approach to
hierarchical segmentation using mean shift. In IEEE
CVPR, pp. 1-8.
Rahtu, E,. Kannala, J., Salo, M., and Heikkilä, J., 2010.
Segmenting salient objects from images and videos. In
ECCV,
pp. 366-379.
Ren, X., and Bo, L., 2012. Discriminatively trained sparse
code gradients for contour detection. In NIPS, pp. 584-
592.
Ren, X., and Malik, J., 2003. Learning a classification
model for segmentation. In IEEE ICCV, pp. 10-17.
Reso, M., Jachalsky, J., Rosenhahn, B., and Ostermann, J.,
2013. Temporally consistent superpixels. In IEEE
ICCV, pp. 385-392.
Rudoy, D., Goldman, D.B., Shechtman, E., and Zelnik-
Manor, L., 2013. Learning video saliency from human
gaze using candidate selection. In IEEE CVPR, pp.
1147-1154.
Sharon, E., Galun, M., Sharon, D., Basri, R., and Brandt,
A., 2006. Hierarchy and adaptivity in segmenting
visual scenes. Nature, vol. 442, no. 7104, pp.719-846.
Singh, A., Chu, C.H., Pratt, M.A., 2014. Multiresolution
superpixels for visual saliency detection. In IEEE
Symposium on Computational Intelligence for
Multimedia, Signal, and Vision Processing.
Sun, J., and Ling, H., 2013. Scale and object aware image
thumbnailing. International Journal of Computer
Vision, vol. 104, no. 2, pp. 135-153.
Sun, D., Roth, S., and Black, M.J., 2010. Secrets of optical
flow estimation and their principles. In IEEE CVPR,
pp. 2432-2439.
Treisman, A.M., and Gelade. G., 1980. A feature-
integration theory of attention. Cognitive Psychology,
vol 12, no. 1, pp 97-136.
Tsai, D., Flagg, M., Nakazawa, A., and Rehg, J.M., 2012.
Motion coherent tracking using multi-label MRF
optimization. International Journal of Computer
Vision vol. 100, no.2, pp. 190-202.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
208