more research studies. The search for WebGL ren-
dering tools should be carrying on and when possible
these elements should replace the implemented SVG
elements. Despite the SUS provides a confident mea-
sure of the perceived usability with a small group of
participants, it was carried out only with biomedical
engineers. Hence, this study should also be performed
by doctors. The integration of the processing in the
acquisition system would provide a real time process-
ing which would reduce the time spent in processing.
REFERENCES
ActiGraph, S. D. (2012). ActiLife 6 users manual.
Aigner, W., Miksch, S., Schumann, H., and Tominski,
C. (2011). Visualization of Time-Oriented Data.
Springer, 1 edition.
Arjunan, S. P., Kumar, D., Wheeler, K., Shimada, H., and
Naik, G. (2011). Spectral properties of surface EMG
and muscle conduction velocity: A study based on
sEMG model. In Biosignals and Biorobotics Confer-
ence (BRC), 2011 ISSNIP, page 14. IEEE.
Beazley, D. M. (2009). Python Essential Reference. Devel-
oper’s Library. Pearson Education, 4 edition.
Brooke, J. (2013). SUS: a retrospective. Journal of Usabil-
ity Studies, 8(2):29–40.
Carus, J. L., Pelaez, V., Garcia, S., Fernandez, M. A., Diaz,
G., and Alvarez, E. (2013). A non-invasive and au-
tonomous physical activity measurement system for
the elderly. pages 619–624. IEEE.
Duckett, J. (2014). JavaScript and JQuery: Interactive
Front-End Web Development. John Wiley & Sons, 1
edition.
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
ioBank, PhysioToolkit, and PhysioNet : Components
of a new research resource for complex physiologic
signals. Circulation, 101(23):e215–e220.
Gomes, R., Nunes, N., Sousa, J., and Gamboa, H. (2012).
Long term biosignals visualization and processing. In
BIOSIGNALS, pages 402–405.
Goya-Esteban, R., Mora-Jimenez, I., Rojo-Alvarez, J. L.,
Barquero-Prez, O., Manzano-Martinez, S., Pastor-
Prez, F., Pascual-Figal, D., and Garcia-Alberola, A.
(2009). Rhythmometric analysis of heart rate variabil-
ity indices during long term monitoring. In Computers
in Cardiology, 2009, page 5760. IEEE.
Heer, J., Kong, N., and Agrawala, M. (2009). Sizing the
horizon: the effects of chart size and layering on the
graphical perception of time series visualizations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1303–1312.
Hilbel, T., Lux, R. L., Dietzsch, J., Schliephake, M., and
Katus, H. A. (2008). Performance and productivity
benefits using multi-core processors for the analysis
of digital long-term ECG recordings. In Computers in
Cardiology, 2008, pages 1069–1072. IEEE.
Hudson, D. L. and Cohen, M. E. (2006). Intelligent analysis
of biosignals. In Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual Inter-
national Conference of the, pages 323–326.
Iliinsky, N. P. N. and Steele, J. (2011). Designing data vi-
sualizations. O’Reilly, Farnham.
Jung, H.-C., Moon, J.-H., Baek, D.-H., Lee, J.-H., Choi, Y.-
Y., Hong, J.-S., and Lee, S.-H. (2012). CNT/PDMS
composite flexible dry electrodesfor long-term ECG
monitoring. IEEE Transactions on Biomedical Engi-
neering, 59(5):1472–1479.
Kaniusas, E. (2012). Fundamentals of biosignals. In
Biomedical Signals and Sensors I, Biological and
Medical Physics, Biomedical Engineering, pages 1–
26. Springer Berlin Heidelberg.
Lan, C.-C., Hsueh, Y.-H., and Hu, R.-Y. (2012). Real-time
fall detecting system using a tri-axial accelerometer
for home care. pages 1077–1080. IEEE.
Machado, I., Gomes, R., Gamboa, H., and Paix
˜
ao, V.
(2014). Human activity recognition from triaxial ac-
celerometer data. In BIOSIGNALS.
Munzner, T. (2009). Visualization. In Fundamentals of
Computer Graphics, pages 675–720.
Murray, S. (2013). Interactive data visualization for
the web: [an introduction to designing with D3].
O’Reilly, Sebastopol, CA.
Neophytou, N., Kyriakides, A., and Pitris, C. (2012). ECG
analysis in the time-frequency domain. In Bioinfor-
matics & Bioengineering (BIBE), 2012 IEEE 12th In-
ternational Conference on, page 8084. IEEE.
Pakhira, M. (2010). Requirements of a graphical system. In
Computer Graphics Multimedia and Animation. PHI
Learning Pvt. Ltd., 2nd edition.
PLUX, w. b. S. (2014). biosignalsplux.
Soares, S. B., Coelho, R. R., and Nadal, J. (2013). The use
of cross correlation function in onset detection of elec-
tromyographic signals. In Biosignals and Biorobotics
Conference (BRC), 2013 ISSNIP, pages 1–5. IEEE.
Van Wijk, J. J. (2005). The value of visualization. In Visu-
alization, 2005. VIS 05. IEEE, pages 79–86.
Welch Allyn (2007). Expert holter software system - direc-
tions for use.
West, B. (2013). Fractal Physiology and Chaos in
Medicine. World Scientific, 2 edition.
NewVisualizationModelforLargeScaleBiosignalsAnalysis
197