tion architecture, IEEE Journal of Solid-State Circuit,
38, 5, pp. 726-733, 2003.
R. C. Gonzalez, R. E. Woods, Digital image processing,
Pearson Prentice Hall:Upper Saddle River, 2008.
M-H Horng, Vector quantization using the firefly algorithm
for image compression, Expert Systems with Applica-
tions, 39, pp.1078-1091, 2012.
S. M. Hosseini, A-R. Naghsh-Nilchi, Medical ultrasound
image compression using contextual vector quantiza-
tion, Computer in Biology and medicine, 42, pp. 743-
750, 2012.
W-L Hung, D-H. Chen, M-S. Yang, Suppressed fuzzy-
soft learning vector quantization for MRI segmenta-
tion, Artificial Intelligence in Medicine, 52, pp. 33-43,
2011.
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a
review, ACM Computing Surveys, 31, 3, pp. 264-323,
1999.
N. B. Karayiannis, P. Pai, Fuzzy vector quantization al-
gorithms and their application in image compression,
IEEE Trans. Image Processing, 4, 9, pp. 1193-1201,
1995.
A. Laha, N. R. Pal, B. Chanda, Design of vector quantizer
for image compression using self-organizing feature
map and surface fitting, IEEE Trans. Image Process-
ing, 13, 10, pp. 1291-1303, 2004.
S. Lazebnik, M. Raginsky, Supervised learning of quantizer
codebooks by information loss minimization, IEEE
Trans on PAMI, 31, 7, pp. 1294-1309, 2009.
Y. Linde, A. Buso, R. Gray, 1980. An algorithm for vec-
tor quantization design, IEEE Trans Communications,
28, 1, pp. 84-94, 1980.
H. Matsumoto, F. Kichikawa, K. Sasazaki, J. Maeda, Y.
Suzuki, Image compression using vector quantization
with variable block size division, IEEJ Trans EIS, 130,
8, pp. 1431-1439, 2010.
T. Miyamoto, Y. Suzuki, S. Saga, J. Maeda, Vector quanti-
zation of images using fractal dimensions, 2005 IEEE
Mid-Summer Workshop on Soft Computing in Indus-
trial Application, pp. 214-217, 2005.
B. P. Nguyen, C-K. Chui, S-H. Ong, S. Chang, An efficient
compression scheme for 4-D medical imaging using
hierarchical vector quantization and motion compen-
sation, Computer and Biology and Medicine, 41, pp.
843-856, 2011.
G. Patane, M. Russo, The enhanced LBG algorithm, Neural
Networks, 14, pp. 1219-1237, 2001.
H. Sakakita, H. Igarashi, J. Maeda, and Y. Suzuki, Evalua-
tion of clustering algorithms for vector quantization in
practical usage, IEEJ Trans. Electronics, Information
and Systems (accepted for publication).
K. Sasazaki, S. Saga, J. Maeda, Y. Suzuki, Vector quantiza-
tion of images with variable block size, Applied Soft
Computing, 8, pp. 634-645, 2008.
K. Sayood, Introduction to data compression, Morgan
Kaufmann Publisher:Boston, 2000.
E. C-K. Tsao, J.C. Bezdek, N.R. Pal., Fuzzy Kohonen clus-
tering networks, Pattern Recognition, 27, 5, pp. 757-
764, 1994.
G. E. Tsekouras, A fuzzy vector quantization approach to
image compression, Applied Mathematics and Com-
putation, 167, pp. 539-560, 2005.
G. E. Tsekouras, M. Antonios, C. Anagnostopoulos, D.
Gavalas, D. Economou, Improved batch fuzzy learn-
ing vector quantization for image compression, Infor-
mation Sciences, 178, pp. 3895-3907, 2008.
D. Tsolakis, G.E. Tsekouras, J. Tsimikas, Fuzzy vector
quantization for image compression based on compet-
itive agglomeration and a novel codeword migration
strategy, Engineering applications of artificial intelli-
gence, 25, pp. 1212-1225, 2012.
Y. Wang, X. Y. Feng, X, Y. X. Huang, D. B. Pu, W. G. Zhou,
Y. C. Liang, C-G. Zhou, A novel quantum swarm evo-
lutionary algorithm and its applications, Neurocom-
puting, 70, pp. 633-640, 2007.
EffectofFuzzyandCrispClusteringAlgorithmstoDesignCodeBookforVectorQuantizationinApplications
205