KUL: GOA MaNet, PFV/10/002 (OPTEC;
FWO: G.0108.11 (Compressed Sensing) ;
G.0869.12N (Tumor imaging);
G.0A5513N (Deep brain stimulation);
IWT: TBM070713-Accelero, TBM080658-
MRI (EEGfMRI);
TBM110697-NeoGuard;
Hui Wang thanks the China Scholarship Council for
financial support.
REFERENCES
E. Candès, 2006, Compressive sampling. In Int. Congr.
Math., Madrid, Spain, vol. 3, pp. 1433–1452.
E. J. Candès, J. K. Romberg, and T. Tao, 2006. Robust un-
Certainty principles: Exact signal reconstruction from.
Highly incomplete frequency information. IEEE Trans.
Inf. Theory, vol. 52, no. 2, pp. 489–509,
E. J. Candès, J. K. Romberg, and T. Tao, 2006. Stable
signal recovery from incomplete and inaccurate
measurements. Commun. Pure Appl. Math., vol. 59,
no. 8, pp. 1207–1223.
E. J. Candès and T. Tao, 2006. Near-optimal signal
recovery from random projections: Universal encoding
strategies?. IEEE Trans. Inf. Theory, vol. 52, no. 12,
pp. 5406–5425.
D. L. Donoho, 2006. Compressed sensing. IEEE Trans.
Inf. Theory, vol.52, no. 4, pp. 1289–1306.
J. Z. Sun and V. K. Goyal, 2009. Quantization for
compressed sensing reconstruction. In Proc. Int. Conf.
Sampling Theory Appl. (SAMPTA), L. Fesquet and B.
Torrésani, Eds., Marseille, France, Special session on
sampling and quantization.
W. Dai, H. V. Pham, and O. Milenkovic, Distortionrate
functions for quantized compressive sensing. In Proc.
IEEE Inf. Theory Workshop on Netw. Inf. Theory, pp.
171–175.
A. Zymnis, S. Boyd, and E. Candes, 2010. Compressed
sensing with quantized measurements. IEEE Signal
Process. Lett., vol. 17, no. 2, pp.149–152.
J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G.
Baraniuk, 2011. Democracy in action: Quantization,
saturation, and compressive sensing. Appl. Comput.
Harmon. Anal., vol. 31, no. 3, pp. 429–443.
L. Jacques, D. K. Hammond, and M.-J. Fadili, 2011.
Dequantizing compressed sensing:When oversampling.
and non-Gaussian constraints combine”, IEEE Trans.
Inf. Theory, vol. 57, no. 1, pp. 559–571.
Y. Plan and R. Vershynin, 2012. Robust 1-bit compressed
sensing and sparse logistic regression: A convex
programming approach. [Online]. Available:
http://arxiv.org/abs/1202.1212.
P. T. Boufounos and R.G.Baraniuk, 2008. One-bit com-
pressive sensing. Presented at the Conf. Inf. Sci. Syst.
(CISS), Princeton, NJ.
J. N. Laska and R. G. Baraniuk, 2012. Regime change: bit
depth versus measurement rate in compressive
sensing”, IEEE Trans. Signal Process., vol. 60, no. 7.
L. Jacques, J. N. Laska, P. T. Boufounos, and R. G.
Baraniuk, 2011. Robust 1-bit compressive sensing via
binary stable embeddings of sparse vectors.
[Online].Available: http://arxiv.org/abs/1104. 3160.
P. T. Boufounos, 2009. Greedy sparse signal re-
construction from sign measurements. In Proc. 43rd
Asilomar Conf. Signals, Syst., Comput. pp. 1305-
1309.
J. N. Laska, Z.Wen, W.Yin, and R. G. Baraniuk , 2011.
Trust, but verify: Fast and accurate signal recovery
from 1-bit compressive measurements, IEEE Trans.
Signal Process., vol. 59, no. 11, pp. 5289–53011.
M. Bogdan, E. van den Berg, W. Su and E. J. Candès,
2013. Statistical estimation and testing via the Sorted.
L1 norm. [Online]. Available: http:// statweb.
stanford.edu/~candes/papers/SortedL1.pdf.
X. L. Huang, Yipeng Liu, Lei Shi, S. V. Huffel,
J.Suykens, 2013. Two-level ℓ1 Minimization for
Compressed Sensing. [Online]. Available: ftp://ftp.esat.
kuleuven.be/pub/SISTA/yliu/two level l1report.pdf.
G. B. Moody, R. G. Mark, and A. L. Goldberger, 2001.
PhysioNet: a webbased resource for the study of
physiologic signals. IEEE Engineering in Medicine
and Biology Magazine vol. 20, no. 3, pp.70–75.
P. S. Addison, 2005. Wavelet transforms and the ECG: a
review. Physiological Measurement, vol. 26, no. 5, pp.
R155.
BIOSIGNALS2015-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
210