Detection of Root Knot Nematodes in Microscopy Images
Faroq AL-Tam, António dos Anjos, Stephane Bellafiore, Hamid Reza Shahbazkia
2015
Abstract
Object detection in microscopy image is essential for further analysis in many applications. However, images are not always easy to analyze due to uneven illumination and noise. In addition, objects may appear merged together with debris. This work presents a method for detecting rice root knot nematodes in microscopy images. The problem involves four subproblems which are dealt with separately. The uneven illumination is corrected via polynomial fitting. The nematodes are then highlighted using mathematical morphology. A binary image is obtained and the microscope lines are removed. Finally, the detected nematodes are counted after thresholding the non-nematode particles. The results obtained from the performed tests show that this is a reliable and effective method when compared to manual counting.
References
- Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., et al. (2008). Genome sequence of the metazoan plant-parasitic nematode meloidogyne incognita. Nature biotechnology, 26(8):909-915.
- Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters. Medical Imaging, IEEE Transactions on, 8(3):263- 269.
- Figueiredo, M. A. and Leitao, J. M. (1995). A nonsmoothing approach to the estimation of vessel contours in angiograms. Medical Imaging, IEEE Transactions on, 14(1):162-172.
- Fisher R., Perkins S., W. A. . W. E. (1996.). Hypermedia Image Processing Reference. J. Wiley & Sons Publishing.
- Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In Medical Image Computing and ComputerAssisted Interventation - MICCAI 98, pages 130-137. Springer.
- Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing, 2-nd Edition. Prentice Hall.
- Hou, Z. (2006). A review on mr image intensity inhomogeneity correction. International Journal of Biomedical Imaging, 2006.
- M.B.T.O.Committee (2010). 2010 report of the methyl bromide technical options committee 2010 assessment.
- Meijster, A., Roerdink, J. B., and Hesselink, W. H. (2002). A general algorithm for computing distance transforms in linear time. In Mathematical Morphology and its applications to image and signal processing, pages 331-340. Springer.
- Mendonc¸a, A. M. and Campilho, A. (2006). Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. Medical Imaging, IEEE Transactions on, 25(9):1200- 1213.
- Otsu, N. (1975). A threshold selection method from graylevel histograms. Automatica, 11(285-296):23-27.
- Serra, J. (1983). Image analysis and mathematical morphology.
- Steger, C. (1998). An unbiased detector of curvilinear structures. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(2):113-125.
- Trussell, H. J. (1978). Picture thresholding using an iterative selection method. Systems, Man and Cybernetics, IEEE Transactions on, 8(8):630-632.
- Vovk, U., Pernus, F., and Likar, B. (2007). A review of methods for correction of intensity inhomogeneity in mri. Medical Imaging, IEEE Transactions on, 26(3):405-421.
- Yim, P. J., Choyke, P. L., and Summers, R. M. (2000). Grayscale skeletonization of small vessels in magnetic resonance angiography. Medical Imaging, IEEE Transactions on, 19(6):568-576.
- Young, I. T. (2001). Shading Correction: Compensation for Illumination and Sensor Inhomogeneities. John Wiley & Sons, Inc.
- Zana, F. and Klein, J.-C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation. Image Processing, IEEE Transactions on, 10(7):1010-1019.
- Zhang, T. Y. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns. Commun. ACM, 27(3):236-239.
Paper Citation
in Harvard Style
AL-Tam F., dos Anjos A., Bellafiore S. and Shahbazkia H. (2015). Detection of Root Knot Nematodes in Microscopy Images . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015) ISBN 978-989-758-072-7, pages 76-81. DOI: 10.5220/0005209000760081
in Bibtex Style
@conference{bioimaging15,
author={Faroq AL-Tam and António dos Anjos and Stephane Bellafiore and Hamid Reza Shahbazkia},
title={Detection of Root Knot Nematodes in Microscopy Images},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)},
year={2015},
pages={76-81},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005209000760081},
isbn={978-989-758-072-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)
TI - Detection of Root Knot Nematodes in Microscopy Images
SN - 978-989-758-072-7
AU - AL-Tam F.
AU - dos Anjos A.
AU - Bellafiore S.
AU - Shahbazkia H.
PY - 2015
SP - 76
EP - 81
DO - 10.5220/0005209000760081