analysis optimal pre-processing has to be performed,
otherwise results may be incorrect.
As authors shown both of mentioned methods
gave satisfactory result, according to the reference
and what is more widely used software solution.
Taking into account all experiments performed by
authors it was proven that both methods might be
successfully used for analysis of NMR spectroscopy
data. Authors observed that crucial points is
sensitivity of both methods for unwanted
components such as noise that might not be
completely removed with advance techniques.
Authors decide to focus on improvement of that
crucial part in their future research.
ACKNOWLEDGMENTS
This work was financed by:
BKM515/2014/9 (MS), HARMONIA 4 register
number 2013/08/M/ST6/00924 (JP), BKM 524/Rau-
1/2014 (FB) and GeCONiI (POIG.02.03.01-24-
099/13) (AP).
All calculations were carried out using infrastructure
of GeCONiI (POIG.02.03.01-24-099/13).
REFERENCES
Beer R., Ormondt D., Pijnappel W.: Quantification of 1-D
and 2-D magnetic resonance time domain signals, Pure
&Appl. Chem., Vol. 64, No. 6, pp: 815-823, (1992).
Behar, K. L., Rothman, D. L., Spencer, D. D., Petroff,
O.A.:. Analysis of macromolecule resonances in 1H
NMR spectra of human brain. Magn. Reson. Med. 32
(3), 294–302, (1994).
Binczyk F. Tarnawski R. Polanska J: Mixture model of
NMR and its application to diagnosis and treatment of
brain cancer. Archives of Control Science 2010, 20(4),
pp:457-472, (2010).
Dempster A.: Maximum likelihood from in- complete data
via the EM algorithm. Journal of the Royal Statistical
Society B, 39(1), pp: 1-22 (1977).
McLachlan G., Peel D: Finite Mixture Models, ISBN:
047165406X, 9780471654063 Wiley & Sons (2000).
Graff R: In vivo NMR spectroscopy. Principles and
Techniques, Wiley & Sons, ISBN: 978-0-470-02670-0
(2007).
Gunther H.: NMR SPECTROSCOPY Basic Principles,
Concepts, and Applications in Chemistry, XIII-XIV,
241-243, ISBN: 978-0-471-95201- (1992).
Hofmann, L., Slotboom, J., Boesch, C., Kreis, R.,:
Characterization of the macromolecule baseline in
localized (1)H-MR spectra of human brain. Magn.
Reson. Med. 46 (5), 855–863 (2001).
Jacobsen N: NMR SPECTROSCOPY EXPLAINED
Simplified Theory, Applications and Examples for
Organic Chemistry and Structural Biology, 4-8, 118-
134, ISBN: 978-0-471-73096-5 (2007).
Krone M., Klawonn F., Luhrs T., Ritter C.: Identification
of Nuclear Magnetic Resonance Signals via Gaussian
Mixture Decomposition, Advances in Intelligent Data
Analysis X, Lecture Notes in Computer Science
Volume 7014, 2011, pp 234-245, (2011).
Lupu D., Todor D: A singular value decomposition based
algorithm for multicomponent exponential fitting of
NMR relaxation signals, Chemometrics and Intelligent
Laboratory Systems 29, pp: 11-17 (1995).
Millar P.: Using the Bayesian Information Criterion to
judge models and statistical significance”, North
American Stata Users' Group Meetings (2006).
Müller N.; Jerschow A. Nuclear Spin Noise Imaging.
Proc. Natl. Acad. Sci. U.S.A. 103, 6790–6792 (2006).
Savitzky A., Golay M.: Smoothing and differentiation of
data by Simplified least squares procedures. Analytical
Chemistry, 36(8), 1627-1639 (1964).
Polanski A., Kimmel M.: Bioinformatics. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, ISBN: 978-
3540241669 pp: 43-45 (2007).
Provencher S.: Automated quantitation of localized
1
HNMR spectra in vivo: Capabilities and limitations.,
Proc SMR, 1952 (1995).
Provencher S.: Estimation of metabolite concentrations
from localized in vivo proton NMR spectra. Magn.
Reson. Med.; 30: 672–679, (1993).
Weinreb, J. C., Brateman, L., Babcock, E. E., Maravilla,
K.R., Cohen, J.M., Horner, S.D.,: Chemical shift
artifact in clinical magnetic resonance images at 0.35
T. AJR Am. J. Roentgenol. 145 (1), 183–185, (1985).
Wilson, M., Reynolds, G., Kauppinen R. A., Arvanitis T.
N., Peet A. C.: A constrained least-squares approach to
the automated quantitation of in vivo 1H magnetic
resonance spectroscopy data. Magn. Reson. Med. 65
(1), 1–12, (2010).
ComparisonofBlackBoxImplementationsofTwoAlgorithmsofProcessingofNMRSpectra,GaussianMixtureModel
andSingularValueDecomposition
65