closer to the healthy state, due to the ‘all-or-none’
nature of the control method.
ACKNOWLEDGEMENTS
The authors would like to acknowledge Professor
Peter Silburn (Asia-Pacific Centre for
Neuromodulation) for his expertise in clinical
aspects of this research along with Professor Tipu
Aziz (Oxford Functional Neurosurgery) for his
research guidance.
REFERENCES
Calabresi, P., B. Picconi, A. Tozzi, V. Ghiglieri and M. Di
Filippo (2014). "Direct and indirect pathways of basal
ganglia: a critical reappraisal." Nat Neurosci 17(8):
1022-1030.
Carron, R., A. Chaillet, A. Filipchuk, W. Pasillas-Lépine
and C. Hammond (2013). "Closing the loop of deep
brain stimulation." Frontiers in Systems Neuroscience
7: 112.
Coyne, T., P. Silburn, R. Cook, P. Silberstein, G. Mellick,
F. Sinclair, G. Fracchia, D. Wasson and P. Stanwell
(2006). "Rapid subthalamic nucleus deep brain
stimulation lead placement utilising CT/MRI fusion,
microelectrode recording and test stimulation." Acta
Neurochirurgica Supplement 99: 49-50.
Golomb, D. and J. Rinzel (1993). "Dynamics of globally
coupled inhibitory neurons with heterogeneity."
Physical Review E 48(6): 4810-4814.
Huntington's Outreach Project for Education, S. U. (2010).
"HOPES Brain Tutorial - Basal Ganglia." Retrieved
14 November, 2014, from http://hopes
.stanford.edu/sites/hopes/files/f_ab18bslgang.gif.
Kühn, A. A., M. I. Hariz, W. Vandenberghe, B. Nuttin, P.
Brown, F. Kempf, C. Brücke, L. Gaynor Doyle, I.
Martinez-Torres, A. Pogosyan, T. Trottenberg, A.
Kupsch, G.-H. Schneider, Neurokirurgi, f. Medicinsk,
n. Farmakologi och klinisk and u. Umeå (2008).
"High-frequency stimulation of the subthalamic
nucleus suppresses oscillatory beta activity in patients
with Parkinson's disease in parallel with improvement
in motor performance." The Journal of Neuroscience
28(24): 6165-6173.
Kühn, A. A., A. Kupsch, G. H. Schneider and P. Brown
(2006). "Reduction in subthalamic 8–35 Hz oscillatory
activity correlates with clinical improvement in
Parkinson's disease." European Journal of
Neuroscience 23(7): 1956-1960.
Little, S., J. FitzGerald, A. L. Green, T. Z. Aziz, P. Brown,
A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz,
T. Foltynie, P. Limousin and K. Ashkan (2013).
"Adaptive deep brain stimulation in advanced
Parkinson disease." Annals of Neurology 74(3): 449-
457.
Marjama-Lyons, J. and M. Okun (2014). Parkinson's
Disease: Guide to Deep Brain Stimulation Therapy,
National Parkinson Foundation.
McConnell, G. C., R. Q. So, J. D. Hilliard, P. Lopomo and
W. M. Grill (2012). "Effective deep brain stimulation
suppresses low-frequency network oscillations in the
basal ganglia by regularizing neural firing patterns."
The Journal of neuroscience : the official journal of
the Society for Neuroscience 32(45): 15657-15668.
Meehan, P. A., P. A. Bellette, A. P. Bradley, J. E. Castner,
H. J. Chenery, D. A. Copland, J. D. Varghese, T.
Coyne and P. A. Silburn (2011). Investigation of the
non-markovity spectrum as a cognitive processing
measure of deep brain microelectrode recordings.
Biosignals 2011. Rome, Italy, SciTePress: 144-150.
Rubin, J. E. and D. Terman (2004). "High frequency
stimulation of the subthalamic nucleus eliminates
pathological thalamic rhythmicity in a computational
model." Journal of Computational Neuroscience 16(3):
211-235.
So, R. Q., A. R. Kent and W. M. Grill (2012). "Relative
contributions of local cell and passing fiber activation
and silencing to changes in thalamic fidelity during
deep brain stimulation and lesioning: a computational
modeling study." Journal of Computational
Neuroscience 32(3): 499-519.
Terman, D., J. E. Rubin, A. C. Yew and C. J. Wilson
(2002). "Activity patterns in a model for the
subthalamopallidal network of the basal ganglia." The
Journal of Neuroscience 22(7): 2963-2976.
ComputationalInvestigationofAdaptiveDeepBrainStimulation
75