Carroll, S. and Carroll, D. (2002). Statistics made simple for
school leaders: data-driven decision making. R&L
Education.
Comanicu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(5):603–619.
Cong, Y., Yuan, J., and Liu, J. (2013a). Abnormal event de-
tection in crowded scenes using sparse representation.
Pattern Recognition, 46(7):1851 – 1864.
Cong, Y., Yuan, J., and Tang, Y. (2013b). Video anomaly
search in crowded scenes via spatio-temporal motion
context. IEEE Transactions on Information Forensics
and Security, 8(10):1590 – 1599.
Eddy, W. (1982). Convex hull peeling. In COMPSTAT,
pages 42–47.
Etiseo (2004). http://www-sop.inria.fr/orion/ETISEO/.
Garcia, D. (2010). Robust smoothing of gridded data in
one and higher dimensions with missing values. Com-
putational Statistics and Data Analysis, 54(4):1167 –
1178.
Hafner, J., Sawhney, H., Equitz, W., Flickner, M., and
Niblack, W. (1995). Efficient color histogram in-
dexing for quadratic form distance functions. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 17(7):729 – 736.
Han, J., Kamber, M., and Pei, J. (2006). Data mining: con-
cepts and techniques. Morgan Kaufmann.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In Fourth Alvey Vision Conference,
pages 147–151.
Hu, X., Hu, S., Zhang, X., Zhang, H., and Luo, L. (2014).
Anomaly detection based on local nearest neighbor
distance descriptor in crowded scenes. The Scientific
World Journal, 2014.
Hugg, J., Rafalin, E., Seyboth, K., and Souvaine, D. (2006).
An experimental study of old and new depth mea-
sures. In Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 51–64.
Icons (2000). http://www.dcs.qmul.ac.uk/research/ vi-
sion/projects/ICONS/. Icons Project.
Jiang, F., Wu, Y., and K.Katsaggelos, A. (2009). Detecting
contextual anomalies of crowd motion in surveillance
video. In 16th IEEE International Conference on Im-
age Processing, pages 1117 – 1120.
Liu, R. (1990). On a notion of data depth based on random
simplices. The Annals of Statistics, 18(1):405–414.
Lom´enie, N. and Stamon, G. (2008). Morphological mesh
filtering and α-objects. Pattern Recognition Letters,
29(10):1571 – 1579.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91 – 110.
Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal
crowd behavior detection using social force model.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 935 – 942.
Miyajima, K. and Ralescu, A. (1994). Spatial organization
in 2D images. In Third IEEE Conference on Fuzzy
Systems, pages 100–105.
Pele, O. and Werman, M. (2010). The quadratic-chi his-
togram distance family. In European Conference on
Computer Vision (ECCV), pages 749 – 762.
PETS (2006). http://www.cvg.rdg.ac.uk/PETS2006/data.
html.
PETS (2009). http://www.cvg.rdg.ac.uk/PETS2009/a.html
Piciarelli, C., Micheloni, C., and Foresti, G. (2008).
Trajectory-based anomalous event detection. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 18(11):1544 – 1554.
Rubner, Y., Tomasi, C., and Guibas, L. (2000). The earth
mover’s distance as a metric for image retrieval. Inter-
national Journal of Computer Vision, 40(2):99–121.
Saleemi, I., Shafique, K., and Shah, M. (2009). Probabilistic
modeling of scene dynamics for applications in visual
surveillance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(8):1472 – 1485.
Tissainayagam, P. and Suter, D. (2005). Object tracking in
image sequences using point features. Pattern Recog-
nition, 38(1):105 – 113.
Tran, D., Yuan, J., and Forsyth, D. (2014). Video event
detection: From subvolume localization to spatio-
temporal path search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(2):404 – 416.
Tukey, J. W. (1975). Mathematics and the picturing of
data. In International Congress of Mathematicians,
volume 2, pages 523–531.
Vardi, Y. and Zhang, C.-H. (2000). The multivariate l1-
median and associated data depth. National Academy
of Sciences, 97(4):1423–1426.
Visam (1997). http://www.cs.cmu.edu/∼vsam/. Visam
Project.
Zhou, H., Yuan, Y., and Shi, C. (2009). Object tracking
using SIFT features and mean shift. Computer Vision
and Image Understanding, 113(3):345 – 352.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
120