Hare, J., Samangooei, S., Lewis, P., and Nixon, M. (2008).
Semantic spaces revisited: investigating the perfor-
mance of auto-annotation and semantic retrieval us-
ing semantic spaces. In Proceedings of the Interna-
tional conference on Content-based image and video
retrieval, pages 359–368.
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006a). A
fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554.
Hinton, G. E., Osindero, S., Welling, M., and Teh, Y. W.
(2006b). Unsupervised discovery of nonlinear struc-
ture using contrastive backpropagation. Cognitive Sci-
ence, 30(4):725–731.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507.
Hofmann, T. (1999). Probabilistic latent semantic analysis.
In Proceedings of the Uncertainty in Artificial Intelli-
gence, pages 289–296.
Huiskes, M. J. and Lew, M. S. (2008). The mir flickr re-
trieval evaluation. In Proceedings of the 2008 ACM
International Conference on Multimedia Information
Retrieval.
Hutchinson, B., Deng, L., and Yu, D. (2013). Tensor deep
stacking networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1944–1957.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Proceedings of the Neural Information
Processing System, volume 22, pages 1106–1114.
Le Roux, N. and Bengio, Y. (2008). Representational power
of restricted Boltzmann machines and deep belief net-
works. Neural Computation, 20(6):1631–1649.
LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Con-
volutional networks and applications in vision. In Pro-
ceedings of International Symposium on Circuits and
Systems, pages 253–256.
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009).
Convolutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 609–616.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Montavon, G., Braun, M. L., and Mller, K.-R. (2012). Deep
Boltzmann machines as feed-forward hierarchies. In
Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics, volume 22, pages
798–804.
Ranzato, M., Krizhevsky, A., and Hinton, G. E. (2010). Fac-
tored 3-way restricted Boltzmann machines for mod-
eling natural images. Journal of Machine Learning
Research - Proceedings Track, 9:621–628.
Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011).
Classifier chains for multi-label classification. Ma-
chine Learning, 85(3):333–359.
Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann
machines. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 5, pages 448–455.
Tsoumakas, G. and Katakis, I. (2007). Multi-label classi-
fication: An overview. International Journal of Data
Warehousing and Mining, 3(3):1–13.
Vens, C., Struyf, J., Schietgat, L., Dˇzeroski, S., and Block-
eel, H. (2008). Decision trees for hierarchical multi-
label classification. Machine Learning, 73(2):185–
214.
Washington, U. (2004). Washington ground truth database.
http://www.cs.washington.edu/research/imagedatabase.
Zhang, M.-L. and Zhou, Z.-H. (2007). Ml-knn: A lazy
learning approach to multi-label learning. Pattern
Recognition, 40(7):2038 – 2048.
Zhang, M.-L. and Zhou, Z.-H. (2014). A review on multi-
label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819–1837.
AutomaticImageAnnotationUsingConvexDeepLearningModels
99