is to complement the model presented in this paper
(Haddad et al., 2014). Future work will focus on ag-
gregating the two propositions into a more unified rec-
ommendation model and on releasing the framework
as an open source project in order to facilitate the
benchmarking of other recommendation approaches.
REFERENCES
Balabanovi
´
c, M. and Shoham, Y. (1997). Fab: content-
based, collaborative recommendation. Communica-
tions of the ACM, 40(3):66–72.
Berkovsky, S., Kuflik, T., and Ricci, F. (2008). Mediation
of user models for enhanced personalization in recom-
mender systems. User Model. User-Adapt. Interact,
18(3):245–286.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy
Objective Function Algorithms. Plenum Press, New
York.
Boutemedjet, S. and Ziou, D. (2008). A graphical model for
context-aware visual content recommendation. IEEE
Transactions on Multimedia, 10(1):52–62.
Burke, R. D. (2007). Hybrid web recommender systems. In
Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The
Adaptive Web, Methods and Strategies of Web Person-
alization, volume 4321 of Lecture Notes in Computer
Science, pages 377–408. Springer.
Deshpande, M. and Karypis, G. (2004). Item-based top-
N recommendation algorithms. ACM Transactions on
Information Systems, 22(1):143–177.
Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992).
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70.
Haddad, M. R., Baazaoui, H., Ziou, D., and Ben Ghezala,
H. (2012). Towards a new model for context-aware
recommendation. In 6th IEEE International Confer-
ence Intelligent Systems (IS), Sofia, Bulgaria, pages
021 –027.
Haddad, M. R., Baazaoui, H., Ziou, D., and Ghezala, H. B.
(2014). A predictive model for recurrent consumption
behavior: An application on phone calls. Knowledge-
Based Systems, 64(0):32 – 43.
Herlocker, L., J., Konstan, A., J., Borchers, A., and Riedl,
J. (1999). An algorithmic framework for perform-
ing collaborative filtering. In Proceedings of the
22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Theoretical Models, pages 230–237.
Iyengar, S. S. and Lepper, M. R. (2000). When choice
is demotivating: can one desire too much of a good
thing? Journal of Personality and Social Psychology,
79(6):995–1006.
Jacoby, J., Speller, D. E., and Berning, C. A. K. (1974).
Brand choice behavior as a function of information
load: Replication and extension. Journal of Consumer
Research: An Interdisciplinary Quarterly, 1(1):33–
42.
Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: an Introduction to Cluster Analysis. Wiley.
Krulwich, B. (1997). Lifestyle finder: Intelligent user pro-
filing using large-scale demographic data. AI Maga-
zine, 18(2):37–45.
Linden, G., Smith, B., and York, J. (2003). Amazon.com
recommendations: Item-to-item collaborative filter-
ing. IEEE Internet Computing, 7(1):76–80.
Mooney, R. J. and Roy, L. (2000). Content-based book rec-
ommending using learning for text categorization. In
Proceedings of the Fifth ACM Conference on Digital
Libraries, pages 195–204. ACM Press, New York.
Pazzani, M. J. (1999). A framework for collaborative,
content-based and demographic filtering. Artif. Intell.
Rev, 13(5-6):393–408.
Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., and
Riedl, J. (1994). Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of
ACM 1994 Conference on Computer Supported Co-
operative Work, pages 175–186, Chapel Hill, North
Carolina. ACM.
Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J.
(2001). Item-based collaborative filtering recommen-
dation algorithms. In WWW, pages 285–295.
Schwartz, B. (2005). The paradox of choice: Why more is
less. Harper Perennial.
Woerndl, W. and Groh, G. (2007). Utilizing physical
and social context to improve recommender systems.
In Web Intelligence/IAT Workshops, pages 123–128.
IEEE.
ICAART2015-InternationalConferenceonAgentsandArtificialIntelligence
442