4 CONCLUSION
In this paper we have introduced a novel model
of structural representation based on a spectral de-
scription of graphs which lifts the one-to-one node-
correspondence assumption and is strongly rooted in
a statistical learning framework. We showed how the
defined separate models for eigenvalues and eigen-
vectors could be used within a statistical framework
to address the graphs classification task. We tested the
defined method against a number of alternative graph
kernels and we showed its effectiveness in a number
of structural classification tasks.
REFERENCES
Aubry, M., Schlickewei, U., and Cremers, D. (2011). The
wave kernel signature: A quantum mechanical ap-
proach to shape analysis. In Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International
Conference on, pages 1626–1633.
Bai, L., Hancock, E., Torsello, A., and Rossi, L. (2013).
A quantum jensen-shannon graph kernel using the
continuous-time quantum walk. In Kropatsch, W.,
Artner, N., Haxhimusa, Y., and Jiang, X., editors,
Graph-Based Representations in Pattern Recognition,
Lecture Notes in Computer Science, pages 121–131.
Springer Berlin Heidelberg.
Biasotti, S., Marini, S., Mortara, M., Patan, G., Spagnuolo,
M., and Falcidieno, B. (2003). 3d shape matching
through topological structures. In Nystrm, I., San-
niti di Baja, G., and Svensson, S., editors, Discrete
Geometry for Computer Imagery, volume 2886 of
Lecture Notes in Computer Science, pages 194–203.
Springer Berlin Heidelberg.
Bonev, B., Escolano, F., Lozano, M., Suau, P., Cazorla, M.,
and Aguilar, W. (2007). Constellations and the un-
supervised learning of graphs. In Escolano, F. and
Vento, M., editors, Graph-Based Representations in
Pattern Recognition, volume 4538 of Lecture Notes
in Computer Science, pages 340–350. Springer Berlin
Heidelberg.
Borgwardt, K. M. and peter Kriegel, H. (2005). Shortest-
path kernels on graphs. In In Proceedings of the 2005
International Conference on Data Mining, pages 74–
81.
Bunke, H., Foggia, P., Guidobaldi, C., and Vento, M.
(2003). Graph clustering using the weighted mini-
mum common supergraph. In Hancock, E. and Vento,
M., editors, Graph Based Representations in Pattern
Recognition, volume 2726 of Lecture Notes in Com-
puter Science, pages 235–246. Springer Berlin Hei-
delberg.
Estrada, F. and Jepson, A. (2009). Benchmarking im-
age segmentation algorithms. International journal of
computer vision, 85(2):167–181.
Friedman, N. and Koller, D. (2003). Being bayesian about
network structure. a bayesian approach to structure
discovery in bayesian networks. Machine Learning,
50(1-2):95–125.
Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey,
C., Muller, J., Doerks, T., Roth, E., Simonovic, M.,
Bork, P., and Mering, C. V. (2008). String 8 a global
view on proteins and their functional interactions in
630 organisms.
Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginal-
ized kernels between labeled graphs. In Proceedings
of the Twentieth International Conference on Machine
Learning, pages 321–328. AAAI Press.
Li, G., Semerci, M., Yener, B., and Zaki, M. J. (2012). Ef-
fective graph classification based on topological and
label attributes. Stat. Anal. Data Min., pages 265–283.
Litman, R. and Bronstein, A. M. (2014). Learning spec-
tral descriptors for deformable shape correspondence.
IEEE Trans. Pattern Anal. Mach. Intell., 36(1):171–
180.
Luo, B., Wilson, R. C., and Hancock, E. R. (2006). A
spectral approach to learning structural variations in
graphs. Pattern Recognition, 39(6):1188 – 1198.
Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia
Object Image Library (COIL-20). Technical report.
Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. (2011).
Weisfeiler-lehman graph kernels. J. Mach. Learn. Res.
Shervashidze, N., Vishwanathan, S. V. N., Petri, T. H.,
Mehlhorn, K., and et al. (2009). Efficient graphlet ker-
nels for large graph comparison.
Silverman, B. W. (1986). Density Estimation for Statistics
and Data Analysis. Chapman & Hall, London.
Todorovic, S. and Ahuja, N. (2006). Extracting subimages
of an unknown category from a set of images. In
Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages
927–934.
Torsello, A. (2008). An importance sampling approach to
learning structural representations of shape. In Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–7.
Torsello, A., Gasparetto, A., Rossi, L., and Hancock, E.
(2014). Transitive State Alignment for the Quantum
Jensen-Shannon Kernel.
Torsello, A. and Hancock, E. (2006). Learning shape-
classes using a mixture of tree-unions. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
28(6):954–967.
Torsello, A. and Rossi, L. (2011). Supervised learning of
graph structure. In Pelillo, M. and Hancock, E. R.,
editors, SIMBAD, volume 7005 of Lecture Notes in
Computer Science, pages 117–132. Springer.
White, D. and Wilson, R. (2007). Spectral generative mod-
els for graphs. In Image Analysis and Processing,
2007. ICIAP 2007. 14th International Conference on,
pages 35–42.
ANon-parametricSpectralModelforGraphClassification
319