REFERENCES
Bertrand, J., Diquet, C., and Puiseux, V. (1848).
D´emonstration d’un th´eor`eme de Gauss. Journal de
Math´ematiques, 13:80–90.
Campagna, S., Kobbelt, L., and Seidel, H.-P. (1998). Di-
rected edges—a scalable representation for tri-
angle meshes. J. Graph. Tools, 3(4):1–11.
Connolly, M. L. (1986). Measurement of protein surface
shape by solid angles. J. Mol. Graph., 4(1):3–6.
De Floriani, L. and Hui, A. (2005). Data structures for sim-
plicial complexes: An analysis and a comparison. In
Proc. of the Third Eurographics Symp. on Geometry
Processing, SGP ’05. Eurographics Association.
Floater, M. and Hormann, K. (2005). Surface parameteriza-
tion: a tutorial and survey. In Advances in Multireso-
lution for Geometric Modelling, Mathematics and Vi-
sualization, pages 157–186. Springer.
Griffin, W., Wang, Y., Berrios, D., and Olano, M. (2011).
GPU curvature estimation on deformable meshes. In
Symp. on Interactive 3D Graphics and Games, I3D
’11, pages 159–166. ACM.
Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry
images. In Proc. of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’02, pages 355–361. ACM.
Hormann, K., Polthier, K., and Sheffer, A. (2008). Mesh
parameterization: Theory and practice. In ACM SIG-
GRAPH ASIA 2008 Courses, SIGGRAPH Asia ’08,
pages 12:1–12:87. ACM.
Hua, J., Lai, Z., Dong, M., Gu, X., and Qin, H. (2008).
Geodesic distance-weighted shape vector image diffu-
sion. IEEE Trans. Vis. Comput. Graph., 14(6):1643–
1650.
Huang, Q.-X., Fl¨ory, S., Gelfand, N., Hofer, M., and
Pottmann, H. (2006). Reassembling fractured ob-
jects by geometric matching. ACM Trans. Graph.,
25(3):569–578.
Hulin, D. and Troyanov, M. (2003). Mean curvature and
asymptotic volume of small balls. The American
Mathematical Monthly, 110(10):947–950.
Kim, Y., Yu, J., Yu, X., and Lee, S. (2008). Line-art il-
lustration of dynamic and specular surfaces. In ACM
SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08,
pages 156:1–156:10. ACM.
Koenderink, J. J. and van Doorn, A. J. (1992). Surface
shape and curvature scales. Image Vision Comput.,
10(8):557–565.
Manay, S., Hong, B.-W., Yezzi, A., and Soatto, S. (2004).
Integral invariant signatures. In Computer Vision -
ECCV 2004, volume 3024 of Lecture Notes in Com-
puter Science, pages 87–99. Springer.
McGuire, M., Osman, B., Bukowski, M., and Hennessy, P.
(2011). The alchemy screen-space ambient obscu-
rance algorithm. In Proc. of the ACM SIGGRAPH
Symp. on High Performance Graphics, HPG ’11,
pages 25–32. ACM.
Mellado, N., Barla, P., Guennebaud, G., Reuter, P., and
Duquesne, G. (2013). Screen-space curvature for
production-quality rendering and compositing. In
ACM SIGGRAPH 2013 Talks, SIGGRAPH ’13, pages
42:1–42:1. ACM.
Meyer, M., Desbrun, M., Schrder, P., and Barr, A. (2003).
Discrete differential-geometry operators for triangu-
lated 2-manifolds. In Visualization and Mathemat-
ics III, Mathematics and Visualization, pages 35–57.
Springer.
Museth, K. (2013). Vdb: High-resolution sparse vol-
umes with dynamic topology. ACM Trans. Graph.,
32(3):27:1–27:22.
Novatnack, J. and Nishino, K. (2007). Scale-dependent 3D
geometric features. In Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, pages
1–8. IEEE.
Pottmann, H., Wallner, J., Huang, Q.-X., and Yang, Y.-L.
(2009). Integral invariants for robust geometry pro-
cessing. Comput. Aided Geom. Des., 26(1):37–60.
Pottmann, H., Wallner, J., Yang, Y.-L., Lai, Y.-K., and Hu,
S.-M. (2007). Principal curvatures from the integral
invariant viewpoint. Computer Aided Geometric De-
sign, 24(8):428–442.
Rusinkiewicz, S. (2004). Estimating curvatures and their
derivatives on triangle meshes. In Proceedings of
the 3D Data Processing, Visualization, and Trans-
mission, 2Nd International Symposium, 3DPVT ’04,
pages 486–493. IEEE Computer Society.
Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H.
(2001). Texture mapping progressive meshes. In Proc.
of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’01, pages
409–416. ACM.
Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and
Hoppe, H. (2003). Multi-chart geometry images.
In Proc. of the 2003 Eurographics/ACM SIGGRAPH
Symp. on Geometry Processing, SGP ’03, pages 146–
155. Eurographics Association.
Sheffer, A., Praun, E., and Rose, K. (2006). Mesh pa-
rameterization methods and their applications. Found.
Trends. Comput. Graph. Vis., 2(2):105–171.
Shirley, P. and Chiu, K. (1997). A low distortion map be-
tween disk and square. J. Graph. Tools, 2(3):45–52.
Taubin, G. (1995). Estimating the tensor of curvature of a
surface from a polyhedral approximation. In Proceed-
ings of the Fifth International Conference on Com-
puter Vision, ICCV ’95, pages 902–. IEEE Computer
Society.
Yang, Y.-L., Lai, Y.-K., Hu, S.-M., and Pottmann, H.
(2006). Robust principal curvatures on multiple
scales. In Symp. on Geometry Processing, pages 223–
226.
Yoshizawa, S., Belyaev, A., and Seidel, H.-P. (2004). A
fast and simple stretch-minimizing mesh parameteri-
zation. In Proc. of the Shape Modeling International
2004, SMI ’04, pages 200–208. IEEE Computer Soci-
ety.
Zhou, K., Synder, J., Guo, B., and Shum, H.-Y. (2004).
Iso-charts: Stretch-driven mesh parameterization us-
ing spectral analysis. In Proc. of the 2004 Eurograph-
ics/ACM SIGGRAPH Symp. on Geometry Processing,
SGP ’04, pages 45–54. ACM.
AParametricSpaceApproachtotheComputationofMulti-scaleGeometricFeatures
15