
Towards Managing Data Variability in Multi Product Lines

Niloofar Khedri and Ramtin Khosravi
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

Keywords: Multi Product lines, Software Product Line Engineering, Data Model Variability, Delta-oriented Programming.

Abstract: Multi product lines (MPLs) are systems consisting of collections of interdependent software product lines
(SPLs). The dependencies and interactions among the SPLs cause new challenges in variability management.
In the case of a large-scale information system MPL, important issues are raised regarding integration of
the databases of the individual SPLs comprising the main system. The aim of this paper is to introduce
a method to manage the variability in the data model of such systems. To this end, we first address the
problem of developing a universal feature model of the MPL, obtained from integrating the feature models
of the individual SPLs, incorporating the data interdependencies among the features. Further, we develop the
data model of the MPL using a delta-oriented technique, based on the universal feature model. Our method
addresses the problem of possible conflicts among the data model elements of different SPLs and proposes
techniques to resolve the conflicts based on data model refinements.

1 INTRODUCTION

Software product line (SPL) approach is based on
defining the commonalities and variabilities of the
products and building reusable platforms. A fea-
ture model contains the compact representation of all
products of software family in terms of features (Pohl
et al., 2005).

“Multi product lines (MPLs) are sets of several
self-contained but still interdependent product lines,
together representing a large-scale or ultra-large-scale
system” (Holl et al., 2012a). As MPL is a system in-
cluding dependent systems, the main issues to man-
age variability include the dependency management
among multiple systems and consistency checking
across them (Holl et al., 2012a). The main role of
the data and the importance of managing data vari-
ability in information systems as well as the lack of
variability management method in MPLs lead us to
the study of the variability in data model of MPLs in
the area of information systems. Having an MPL of
information systems implies some kind of data inte-
gration between the system. Designing a single inte-
grated database schema is a solution to this problem
which benefits from the capabilities such as defining
referential integrity across the subsystems, global op-
timizations, partitioning and clustering.

The main goal of the study is to present a method
to develop a single data model for an MPL of sev-
eral information systems, each having a separate data

model. Our method to manage the variability in the
data model of the MPLs is based on a delta-oriented
technique which uses the feature model as the ba-
sis to model variability in terms of delta modules.
Hence, we need a way to represent the variabilities
in the MPL in a universal feature model. As there
is no common well-known method to derive such a
feature model for MPLs, we first solve this problem
by integrating the feature models of the subsystems
focusing on the data interdependencies among them.
Based on the universal feature model, we present a
delta-oriented method to generate the data model for
the MPL.

We have used our method in a case study which
is a family of university software systems and library
information systems. This study is part of a project,
currently being done in the Software Architecture
Laboratory in University of Tehran on developing a
middle-sized MPL for university-related information
systems. Figures 1 and 2 illustrate the simplified fea-
ture models of our running example of the university
and library product lines. Our main contributions in
this paper are summarized below:

• Providing a method to create a universal feature
model for MPLs focusing on the data interdepen-
dencies among systems.

• Presenting a method to generate the MPLs data
model with regards to the interdependencies
among systems.

523Khedri N. and Khosravi R..
Towards Managing Data Variability in Multi Product Lines.
DOI: 10.5220/0005227005230530
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 523-530
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Simplified university feature model.

Figure 2: Simplified library feature model.

• Reducing the complexity of generating MPLs
data model through systematic reuse across data
model development of systems by presenting the
MPLs core data model and delta models.

2 DATA MODEL VARIABILITY IN
SPLS

In our previous work(Khedri and Khsoravi, 2013),
we presented an approach to manage variability in
database design of information system product lines
based on delta-oriented programming (DOP) tech-
nique (Schaefer et al., 2010). In DOP, a core module
contains the mandatory features of the product family
and delta modules are linked to the alternative and op-
tional features. A product is created by applying delta
modules to the core module incrementally.

In our method (Khedri and Khsoravi, 2013), the
core includes the DDL scripts of the mandatory (and
some selected alternative and optional) features and
a delta consists of the DDL scripts of the changes to
the core to implement the related feature. The DDL
scripts related to the deltas includes the related tables,
columns, primary keys, foreign keys and constraints
to implement the feature in data model. The deltas
are applied to the core in a sequence, derived by ap-
plying topological sort on the dependency graph of
the selected configuration.

The consistency of the resulting database is
checked during the process and the conflicts are han-

Figure 3: A sample SPL configuration and applying the re-
lated deltas to the core.

dled by creating new DDL scripts or changing the
existing ones. For instance, the selected configura-
tion of the sample SPL is depicted in Figure 3. The
core consists of the mandatory features A and B. The
dependency graph related to selected configuration is
shown in Figure 3. One sequence of applying deltas
to the core according to the result of applying topo-
logical sort on the dependency graph isC, G andH.
The whole method of applying DDL delta scripts to
the core is illustrated in Figure 3.

3 GENERATING FEATURE
MODEL FOR MPL

In this paper, we generate the feature model of the
MPLs from that of the product families and their data
model, in contrast to the SPL approach, in which
the feature model is generated at the end of the do-
main requirement engineering through analysis of the
variable and common requirement of the product line
(Pohl et al., 2005).

3.1 Matching and Mapping Features of
SPLs

Our method is based on comparison and analysis of
the core and deltas to find the matching features.
Since the data model contains the detail of the system
at the database level, the result of matching the data
model elements can make the matching of features
more accurate. It is important to note that the features
implementation at the data model level includes the
details that make easier the identification of the dif-
ferences and similarities of the features. For instance,
the featuresRegistrationin University and Register
in Library are matched just by looking at the feature

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

524



models. But in our method, in the core data model
of the University, theRegistrationfeature represents
that the student takes some courses each term. InLi-
brary data model theRegisterfeature corresponds to
the membership of the students in library. As a result,
the details of data models do not show any similarity
between these features, also theRegistrationfeature
is implemented by a more precise relationship inUni-
versity data model (Takes)1. Having a well-defined
meta-model, the data model can be used as a guide to
semantically differentiate between two features.
The Core and Delta Models Element Matching.At
the first step, the core and delta models of the indi-
vidual SPLs are compared and the set of matching
schema elements are identified. We use name match-
ing method to find the schema element with equal or
similar names (Palopoli et al., 1998). In some cases,
two elements have the same name but different con-
cept in the core data models (called homonyms in
database concept (Batini and Lenzerini, 1984)), so
to prevent further conflicts in schema merging we re-
name one and modify all the deltas consisting the el-
ement (see Section 4.3).
Feature Matching. The set of features related to
the matched elements are identified according to
the mapping of the core and delta elements in data
model to the features. As mentioned in Section 2,
each data model element in the core or deltas is re-
lated to at least one feature. At the end of this
step, a set of potentially matched features is gen-
erated: {(Student,Member),(Instructor,Member),
(Admin,Admin), ...}
Feature Mapping. In this phase, the relation between
the matched features is identified. We classify the re-
lation between the features in three categories as listed
below:

• Equivalent (≡): FeatureF1 from product fam-
ily SPL1 is to the featureF2 from product family
SPL2 (SPL1.F1 ≡ SPL2.F2), if they represent the
same concept. They can be renamed to have the
same name.

• Generalized (⊑): One feature can be general-
ized to the other one (SPL1.F1 ⊑ SPL2.F2). It
means thatF2 is a generalization ofF1. For in-
stance, “University.Student⊑ Library.Member”
means that aStudentin theUniversity is aMem-
ber of Library.

• Undecided (<>): In some cases we cannot make
a decision on the proper and reasonable relation
between the matched features. For instance, the
Admin in University and Admin in Library data

1University data model: http://khorshid.ut.ac.ir/
∼n.khedri/FigureUCore.png

Figure 4: MPLs feature model methodology.

models are mapped onto each other, but we can-
not decide about these features, because they may
or may not have the same functionality. In such
cases, the customer’s requirements of the MPLs
define the relation between the features.

For example, analyzing the running exam-
ple including University and Library shows a
list of relations between the features including:
(University.Student ⊑ Library.Member,
University.Instructor ⊑ Library.Member,
University.Administration<> Library.Admin)

3.2 MPLs Feature Model

The goal here is to generate a data-focused feature
model for MPLs containing all the features of the
SPLs and their interrelations. To generate the feature
model, a new feature model is created. The root fea-
ture is the MPLs, and its sub-features are the feature
models of the product families in MPLs.

At first, we analyze each identified relation be-
tween featuresA andB (equivalent, generalized and
undecided), to find a new possible variation point in-
cluding new requirements or business rules and im-
prove the MPLs feature model by adding integration
features or new relations. For instance, when thegen-
eralized relation betweenInstructor and Memberis
identified (Instructor⊑ Member), we can ask some
questions as below: “Does the library lend books to
Instructors?” “Is it necessary to have special rules to
lend books to Instructors (for example, they can lend
more books than general members)?” So, there is a
variation point inLibrary feature model, and a new
integration featureInstructorMemberis added under
theMemberspecifying whether the feature is manda-
tory, optional or alternative as well as its relationships
to other features. For example, theInstructorMember
is an optional feature (depicted in Figure 5). The in-
terrelations between features of multiple systems are
shown by “Requires” and “Excludes” relations be-
tween features.

We add the new variation point, features and rela-
tionships to the MPLs feature model. In some cases,
the variation point and new features are added to the
sub-tree of a product family. But in some other cases,

Towards�Managing�Data�Variability�in�Multi�Product�Lines

525



features are added under the MPLs’ root which indi-
cates a new variability that is created when combining
the systems together. As a result, an integration fea-
ture is added to the MPLs feature model in accordance
with the new variation points generated by integrating
systems. An integration feature is added to the MPLs
feature model in two levels: SPLs-level and MPLs-
level.

Second, we iteratively analyze the sub-features
and relationships of the matching features. For
example, we should analyze the sub-features
and relationships of Instructor and Member
(Instructor ⊑ Member). InvitedLecturer is a
sub-feature of theInstructor; the new questions
are: “Does the library lend books to guest in-
structors?” “Is it necessary to have special rules
to lend books to guest instructors?” As a result,
a new feature InvitedLecturerMemberis added
under theInstructorMemberwith the new relation
“ InvitedLecturerMember⇒ InstructorMember”.

Admin is a sub-feature of theMemberin Library
feature model; the questions are: “Can the library ad-
min be a student at the university?” “If yes, is there
any difference between a student and a librarian (as
a student) for the University?” As there is no differ-
ence for the university between a library admin and a
student, no new business rules is added and the MPLs
feature model is not changed. The resulting feature
model related to our case study including the univer-
sity education and library systems is depicted in Fig-
ure 5.

In the case of an undecided relation between
two features, the domain experts of the systems
must analyze the systems and study the features,
their functionality and role in each system and
multi-system. In the case study, handling the
“University.Administration <> Library.Admin”
implies that administration operations are not the
same in these systems. In this case, the feature model
of the individual systems is modified and a new vari-
ation point is identified in the MPLs-level, which im-
plies the variability on handling administration opera-
tion in the whole system (Administration, Centralized
andPerProduct, depicted in Figure 5).

4 MPL DATA MODEL

Our method to build the data model of the MPLs is
based on delta-oriented techniques (Khedri and Khso-
ravi, 2013). The obvious method of designing data
model for the whole MPL from scratch is not prac-
tical, since we lose the reuse obtained from applying
SPL method on the individual subsystems. Further-

more, designing the MPLs core requires a team of dif-
ferent domain experts, not always available, and MPL
is a(n) (ultra-)large scale system, the design and im-
plementation of the core and all the deltas of which
are complicated due to the interrelations between the
systems.

In the presented method, we suppose to have the
set of cores and deltas related to each family. First,
we build a modified version of the core data models
of each product, consisting of the interdependency be-
tween the core features of them. Also, we create a set
of integration delta models related to the integration
features of MPLs feature model. Then, the modified
core data models are merged to create a core related
to the MPLs. Finally, the data model of the MPLs is
created by adding deltas associated with the selected
features to the MPLs core. Given that the interrela-
tions between systems are handled in modified core
and MPLs-deltas, the presented method is more prac-
tical and understandable in comparison with the inte-
grating data models method (mentioned above).

4.1 Integration Delta Models

In section 3, we present a method to generate a fea-
ture model consisting of all the features of MPL sys-
tem and their relations in one feature model. In some
cases, a new integration feature is added to the fea-
ture model to represent an interrelation between two
systems. For instance,StudentMemberis added to the
Library feature model, indicating that student can be
a member of library. In this step, we provide integra-
tion delta models for each integration feature.

The integration delta related to MPLs-level in-
tegration feature, named MPLs-delta, may integrate
more than two systems in the MPLs and consequently,
can affect more than two data models. Hence, the in-
tegration delta model generation is an important phase
in our method possibly preventing further conflicts in
data model generation.

4.2 Modified Core Delta Models

In the delta-oriented approach, we first build a core
for MPLs and then apply delta models on it to gen-
erate the MPLs data model. In our method, the core
of each system consists of the mandatory features of
the family. We cannot merge the cores of the mul-
tiple systems without considering the interdependen-
cies. Consequently, each core should be modified to
include the interdependencies. At this step, the core
features of each product based on the related sub-
root in MPLs feature model are defined. For exam-
ple, StudentMember, added to theLibrary product is

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

526



Figure 5: MPLs feature model.

a mandatory integration feature and is selected in the
set of core features. We have “Student IS−A Mem-
ber” as the relationship between the entities.

Then, we apply the new integration features and
new relations to the related product core by applying
the related DDL script to the core and resolve prob-
able conflicts (Khedri and Khsoravi, 2013). As a re-
sult, each core is modified to include its integration
features.

4.3 Generating the MPLs Data Model

In this step, the core data model of the MPLs is gener-
ated by integrating the core data models of the prod-
ucts, using integration (and merge) schema methods
in database context (Pottinger and Bernstein, 2003).
Some conflicts may arise during the integration pro-
cess. These conflicts are resolved by database solu-
tions (Pottinger and Bernstein, 2003). The output of
this phase is the core data model of the MPLs.

Our method to merge the schemas, based on the
schema integration methodology in the ER models,
is explained in (Batini and Lenzerini, 1984). The
method contains three main phases: conflict analy-
sis, merging and restructuring. In conflict analysis
the naming conflicts and modeling compatibility is
checked. The names of the elements are compared
in order to set a unique name to the matched ele-
ments in the integrated schema. Two possible cases
can be identified here: synonyms and homonyms.
Homonym is the case in which two unmatched ele-
ments have the same name, handled initially by re-
naming one element to another name during the ele-
ment matching step (Section 3.1). Modeling compat-
ibility analysis contains the type checking analysis,
transforming the element type to another (for instance
transform an entity to an attribute). Then the inte-
grated schema is enriched and restructured to find new

properties in integrated schema. Note that we keep
track of all changes to the schemas in conflict anal-
ysis and restructuring phases to do the same changes
on related deltas. After that schemas are merged. At
last, the SQL script of the MPLs Integrated core data
model is generated for the next phase.

In this section, the MPLs data model is gener-
ated by applying DDL delta scripts related to the
MPLs selected configuration on the integrated core
data model. The sequence of applying deltas is de-
fined according to the relation between features in
MPLs feature model by creating a dependency graph
of selected features and then running topological sort
on it.

4.4 Methodology

Software product line engineering (SPLE) has two
concurrent processes: domain engineering and appli-
cation engineering (Pohl et al., 2005). The common-
alities and variabilities of the products are defined in
domain engineering and a reusable platform is devel-
oped. The real products based on the customer re-
quirements are generated during the application engi-
neering. MPL is a collection of interconnected prod-
uct families, so our methodology can be presented
based on the processes of the SPLE mentioned above
(Figure 6 illustrates our methodology).

As we present a method to generate the data model
of the MPLs in database implementation level, all
the activities in our method are considered as parts
of the domain realization and application realization
sub-processes of domain and application engineering
processes respectively.

In domain realization sub-process of the domain
engineering process, the detailed design and imple-
mentation of the software are provided to be reused

Towards�Managing�Data�Variability�in�Multi�Product�Lines

527



Figure 6: The presented methodology.

in application realization (Pohl et al., 2005). As a re-
sult, the conclusion can be drawn that the high level
structure of the data model of the MPLs is generated
in domain realization sub-process too. The core and
deltas of the MPLs are implemented in domain real-
ization.

5 DISCUSSION

Applying the Method on Global Schema. In the
case of using global schema instead of the core and
deltas, the mapping between global schema elements
and features must be identified too. Our approach to
find the mapping is to identify the database opera-
tion for each feature. For example, featureRegister
in University indicates that the courses for the new
term are shown first (selectoperation onCourseand
Termtables), and then each student choose the desired
courses (insert operation in the table which show the
relation betweenStudent, CourseandTerm). Analyz-
ing the database operation performed in each features
can result in a mapping between the database objects
and the features, which in turn can be used as a guide
to match features as described.

5.1 MPLs Feature Model

Integrating Feature Models. In the method pre-
sented, the mechanism to generate a universal fea-
ture model for the MPLs is based on matching feature
models incorporating the data models of the product
families in MPLs. This requires a teamwork between
the domain experts of the individual SPLs, as well as
their data modelers. Also, in the case that the method
is applied to global schemas, the presented method
requires added work on the schemas to find out the
relationship between features and schema elements.

As the main focus of our method is to develop the

data model of the MPLs, the universal feature model
may miss some interdependencies and new features
that do not affect the data access layer, and hence,
cannot be considered as a complete variability model
for the MPL. In case such a model is needed, separate
effort based on other viewpoints (e.g. user interface)
is needed.

5.2 MPLs Data Model

Conflict Resolution. As mentioned before, it is not
possible to merge the data model of the product fam-
ilies in MPLs due to the (ultra-) large size of the
data models and the inconsistency among data mod-
els. The inconsistency among data models results in
conflicts in schema integration and the large size of
the data models reduces the possibility of finding the
source of the conflict. The data model of the MPLs is,
as a result, generated in three steps and the emerging
conflicts are resolved in each step.

The conflicts in the first step can be handled by
reviewing the deltas in conflict and build a new delta
for them. The goal of the second step is generating the
MPLs core data model. In conflict analysis and trans-
forming phases, the data model may change due to the
conflict or inconsistencies between schemas. More-
over, the delta models are changed to be consistent to
the MPLs core data model. In the last step, the data
model of the MPLs is created by applying deltas to
the core data model of MPLs. The conflicts in this
step usually have two reasons. First, the dependency
among the deltas models causes the conflict. Such
conflicts can be handled by deriving a new delta for
the features in conflict. Second, the changes on the
modified cores cause an inconsistency between the
MPLs core and deltas. We can solve such conflicts
by transforming the deltas to a new one that changes
the core data model to implement the related feature.
Data Model Completeness.The MPLs data model
consists of all the elements needed to implement the
related features in each product family as well as the
interconnections among families. There is no element
in the data model, redundant due to the selected fea-
ture model.
Data Integrity. The integrity of the MPLs data model
is handled through defining the primary and foreign
keys and constraints between database elements (col-
lectively named constraint scripts). In the proposed
method, we define constraint scripts in the related
DDL scripts such as the core and deltas. In the first
applying of deltas to the family core and in the last
phase consisting of applying deltas to the MPLs core
to generate the MPLs data model, delta scripts includ-
ing the constraint scripts are applied and the database

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

528



checks the correctness of the constraint scripts and
their references. As a result, the database itself checks
the integrity of the data.
Complexity of the MPLs Schema. In the proposed
method, the complexity of the MPLs meta-model is
decreased because the MPLs data model consists of
the required database elements and there is no redun-
dant element in the MPLs data model.

6 RELATED WORK

The capabilities to support the MPLs are reviewed in
(Holl et al., 2012a) such as sharing and distribution of
variability models, defining and managing the differ-
ent types of the dependencies and consistency check-
ing as we face with them in this paper.

6.1 Variability Modeling in MPLs

Some existing work have studied merging feature
models. Cross product line analysis proposed a
method based on similarity metrics and clustering to
analyze the commonalities and variabilities of various
related SPLs (Wulf-Hadash and Reinhartz-Berger,
2013). Another approach for merging feature mod-
els based on graph transformation is discussed in (Se-
gura et al., 2008), relying on having features with the
same name and the same roots in the feature mod-
els. In MPLs, the systems do not necessarily have the
same root and features with the same name. Merge
and insert operators on feature models are developed
as composition operators (Acher et al., 2009) and then
a domain specific language named FAMILIAR pre-
sented to support the large scale management of fea-
ture models (Acher et al., 2011). In our method, a new
feature model with new features and relations is gen-
erated for the MPLs in contrast to the merging feature
models method (Wulf-Hadash and Reinhartz-Berger,
2013; Segura et al., 2008).

In (Hartmann and Trew, 2008), the context vari-
ability model meaning the variability of environment
is combined to the feature model to support dimen-
sions in context space and proposes a consistent con-
text feature model. In (Rosenmüller et al., 2008), de-
pendent SPLs are modeled in a class diagram that
shows the SPLs and their dependencies. Then, in
(Rosenmüller and Siegmund, 2010), a method to de-
sign and configure these systems is presented which
automatically creates the configuration generators. In
(Hartmann and Trew, 2008; Rosenmüller et al., 2008;
Rosenmüller and Siegmund, 2010), the consistency
and interdependencies between various SPLs are kept
in a single model for the MPLs similar to our method.

In our method, our focus is on data dependency and
data consistency, whereas in (Hartmann and Trew,
2008) and (Rosenmüller et al., 2008; Rosenmüller
and Siegmund, 2010), the focus is on the context and
the relationship between different SPLs such as use,
respectively.

In (Holl et al., 2012b), the MPLs is modeled and
deployed by product line bundles. Product line bun-
dles consist of the table of contents and meta-data, the
variability model, organizational policies, dependen-
cies to other bundles, and an expiry date. In (Holl
et al., 2012b), the set of dependencies between prod-
uct lines is defined asinferred, confirmedandformal-
ized. In this work, the dependencies between systems
are defined and modeled like in our method. In our
method, the dependencies between systems are han-
dled by the feature model relationsrequire and ex-
clude, and we concentrate on the data interdependen-
cies between systems. Moreover, we identify the new
integration features, especially at the MPLs-level that
show new services, added to the whole system by us-
ing MPLs. It is important to note that our method
is not in contrast with existing techniques on MPL
feature modeling and other methods to integrated the
feature models mentioned above can be employed in
our method during the development of the universal
feature model.

6.2 Managing Variability in Data Model

There are some studies on modeling data variabil-
ity in SPLs (Zaid and Troyer, 2011; Bartholdt et al.,
2009; Siegmund et al., 2009; Schäler et al., 2012). A
method to manage data variability in domain model
layer (not database design and implementation) is pre-
sented in (Bartholdt et al., 2009). Managing variabil-
ity in the domain layer makes database designer check
the database constraints in domain or application
layer probably leading to data inconsistency. Also, in
(Siegmund et al., 2009), a global consistent schema
is created out of different local schemas for users by
using view integration techniques. In (Schäler et al.,
2012), the work is extended to modeling the variable
schemas based on features and then generates the tai-
lored schemas automatically by superimposing vari-
able schemas, namely entity-relationship diagrams.
The schema composition methods have the limitation
on removing some parts of the database elements as
well as the transforming database element type, but
using the delta-oriented method proposed, we can ap-
ply the mentioned changes to database. For example,
attributeA changes to a new tableA. This change is
impossible in schema composition approaches, but in
our method, a delta script can handle it.

Towards�Managing�Data�Variability�in�Multi�Product�Lines

529



In (Zaid and Troyer, 2011), data model variabil-
ity is managed in a single data model. The proposed
method leads to a complicated data model when the
size of the product family increases. Note that in
(Zaid and Troyer, 2011), the entities and attributes
are the variable database elements, but in our method
there is no limitation on database elements. As men-
tioned in (Holl et al., 2012a), MPLs representation in
a single model is hard due to its size and complexity.
Consequently, we build the data model of the MPLs
by generating the data model of the mandatory part
of each data model, merging them, and applying the
variable part at the end.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we addressed the feature model rep-
resentation and data model variability problem in
MPLs. First, we introduced a method for generat-
ing a universal feature model according to the data
model interdependencies, extracted from data model
element matching. Second, we propose a three-phase
method to generate the MPLs meta-model based on
delta-oriented programming and schema integration
methods. The proposed method has been applied on
theUniversity Education Systems, Reserve Food Sys-
temsandLibrary Systems. As the proposed method is
in progress, we plan to analyze the influences of the
software evolution, adding feature and modify exist-
ing ones on both techniques: generating a universal
feature model and a single data model for the MPL.

Our method is planned to support the interdepen-
dencies in the application and presentation layers and
propose a universal feature model for MPLs in fu-
ture. Furthermore, future work includes tool support
for automatic generation of the MPLs data model that
visually represents the cores and delta models related
to each product family.

REFERENCES

Acher, M., Collet, P., Lahire, P., and France, R. B. (2009).
Composing feature models. InSLE ’09, pages 62–81.

Acher, M., Collet, P., Lahire, P., and France, R. B. (2011).
Managing feature models with familiar: a demonstra-
tion of the language and its tool support. InVaMoS
’11, pages 91–96.

Bartholdt, J., Oberhauser, R., and Rytina, A. (2009). Ad-
dressing data model variability and data integration
within software product lines.International Journal
On Advances in Software, 2:84–100.

Batini, C. and Lenzerini, M. (1984). A methodology
for data schema integration in the entity relationship
model. IEEE Trans. Software Eng., 10(6):650–664.

Hartmann, H. and Trew, T. (2008). Using feature dia-
grams with context variability to model multiple prod-
uct lines for software supply chains. InSPLC ’08,
pages 12–21.

Holl, G., Grnbacher, P., and Rabiser, R. (2012a). A system-
atic review and an expert survey on capabilities sup-
porting multi product lines.Information and Software
Technology, 54(8):828–852.

Holl, G., Thaller, D., Grünbacher, P., and Elsner, C.
(2012b). Managing emerging configuration depen-
dencies in multi product lines. InVaMoS ’12, pages
3–10.

Khedri, N. and Khsoravi, R. (2013). Handling database
schema variability in software product lines. In
APSEC ’13, pages 331–338.

Palopoli, L., Saccà, D., and Ursino, D. (1998). Semi-
automatic semantic discovery of properties from
database schemas. InIDEAS ’98, pages 244–253.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005).Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Springer-Verlag.

Pottinger, R. A. and Bernstein, P. A. (2003). Merging mod-
els based on given correspondences. VLDB ’03, pages
862–873.

Rosenmüller, M. and Siegmund, N. (2010). Automating
the configuration of multi software product lines. In
VaMoS ’10, pages 123–130.

Rosenmüller, M., Siegmund, N., Kästner, C., and ur Rah-
man, S. S. (2008). Modeling dependent software prod-
uct lines. InMcGPLE ’08, pages 13–18.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tan-
zarella, N. (2010). Delta-oriented programming of
software product lines. InSPLC ’10, pages 77–91.

Schäler, M., Leich, T., Rosenmüller, M., and Saake, G.
(2012). Building information system variants with tai-
lored database schemas using features. InCAiSE ’12,
pages 597–612.

Segura, S., Benavides, D., Ruiz-Cortés, A., and Trinidad,
P. (2008). Generative and transformational techniques
in software engineering II. chapter Automated Merg-
ing of Feature Models Using Graph Transformations,
pages 489–505. Springer-Verlag.

Siegmund, N., Kstner, C., Rosenmller, M., Heidenreich,
F., Apel, S., and Saake, G. (2009). Bridging the gap
between variability in client application and database
schema. InGerman Database Conference ’09, pages
297–306.

Wulf-Hadash, O. and Reinhartz-Berger, I. (2013). Cross
product line analysis. InVaMoS ’13, pages 21:1–21:8.

Zaid, L. A. and Troyer, O. D. (2011). Towards model-
ing data variability in software product lines. InBM-
MDS/EMMSAD ’11, pages 453–467.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

530


