Babiarz, A., Klamka, J., et al. (2014b). An approach to
observability analysis and estimation of human arm
model. In 11th IEEE International Conference on
Control and Automation, pages 947 –952. IEEE.
Bai, O., Nakamura, M., and Shibasaki, H. (2001). Com-
pensation of hand movement for patients by assistant
force: relationship between human hand movement
and robot arm motion. Neural Systems and Rehabili-
tation Engineering, IEEE Transactions on, 9(3):302–
307.
Błachuta, M., Czyba, R., Janusz, W., and Szafra´nski, G.
(2014). Data Fusion Algorithm for the Altitude and
Vertical Speed Estimation of the VTOL Platform.
Journal of Intelligent and Robotic Systems, 74(1-
2):413–420.
Burdet, E., Tee, K. P., Mareels, I., Milner, T. E., Chew, C.-
M., Franklin, D. W., Osu, R., and Kawato, M. (2006).
Stability and motor adaptation in human arm move-
ments. Biological cybernetics, 94(1):20–32.
Chang, P. H., Park, K., Kang, S. H., Krebs, H. I., and Hogan,
N. (2013). Stochastic estimation of human arm
impedance using robots with nonlinear frictions: An
experimental validation. Mechatronics, IEEE/ASME
Transactions on, 18(2):775–786.
Chen, K. (2011). Modeling of equilibrium point trajectory
control in human arm movements. PhD thesis, New
Jersey Institute of Technology.
Csercsik, D. (2005). Analysis and control of a simple non-
linear limb model. PhD thesis, University of Technol-
ogy.
Czornik, A. and Niezabitowski, M. (2013). Controllability
and stability of switched systems. In Methods and
Models in Automation and Robotics (MMAR), 2013
18th International Conference on, pages 16–21.
Czornik, A. and
´
Swierniak, A. (2004). On direct controlla-
bility of discrete time jump linear system. Journal of
the Franklin Institute, 341(6):491–503.
Czornik, A. and
´
Swierniak, A. (2005). Controllability
of discrete time jump linear systems. Dynamics of
Continuous Discrete and Impulsive Systems-Series B-
Applications & Algorithms, 12(2):165 – 189.
HosseinNia, S. H., Tejado, I., and Vinagre, B. M. (2013).
Stability of fractional order switching systems. Com-
puters & Mathematics with Applications, 66(5):585–
596.
Kaczorek, T. (2013). Stability of positive fractional
switched continuous-time linear systems. Bulletin of
the Polish Academy of Sciences. Technical Sciences,
Vol. 61(2):349–352.
Klamka, J., Czornik, A., and Niezabitowski, M. (2013).
Stability and controllability of switched systems. Bul-
letin of the Polish Academy of Sciences. Technical Sci-
ences, 61:547–555.
Klamka, J., Czornik, A., Niezabitowski, M., and Babi-
arz, A. (2014). Controllability and minimum en-
ergy control of linear fractional discrete-time infinite-
dimensional systems. In 11th IEEE International
Conference on Control and Automation, pages 1210–
1214. IEEE.
Klamka, J. and Niezabitowski, M. (2013). Controllability of
switched linear dynamical systems. In Methods and
Models in Automation and Robotics (MMAR), 2013
18th International Conference on, pages 464–467.
Klamka, J. and Niezabitowski, M. (2014). Controllabil-
ity of switched infinite-dimensional linear dynamical
systems. In Methods and Models in Automation and
Robotics (MMAR), 2014 19th International Confer-
ence on, pages 171–175.
Kong, K. and Tomizuka, M. (2009). Control of ex-
oskeletons inspired by fictitious gain in human
model. Mechatronics, IEEE/ASME Transactions on,
14(6):689–698.
Lee, D., Glueck, M., et al. (2010). A survey of modeling
and simulation of skeletal muscle. ACM Transactions
on Graphics, 28(4):162.
Liberzon, D. (2003). Switching in systems and control.
Springer.
Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Mag-
nor, M., and Theobalt, C. (2013). Capture and statisti-
cal modeling of arm-muscle deformations. In Com-
puter Graphics Forum, volume 32, pages 285–294.
Wiley Online Library.
Pavlovic, V., Rehg, J. M., and MacCormick, J. (2001).
Learning switching linear models of human motion.
In Leen, T., Dietterich, T., and Tresp, V., editors, Ad-
vances in Neural Information Processing Systems 13,
pages 981–987. MIT Press.
Pons, J., Moreno, J., Brunetti, F., and Rocon, E. (2007).
Lower-Limb Wearable Exoskeleton In Rehabilitation
Robotics. Monografie - Komitet Automatyki i Robo-
tyki P. I-Tech Education and Publishing.
Sekine, M., Sugimori, K., Gonzalez, J., and Yu, W. (2013).
Optimization-Based Design of a Small Pneumatic-
Actuator-Driven Parallel Mechanism for a Shoulder
Prosthetic Arm with Statics and Spatial Accessibil-
ity. Evaluation. International Journal of Advanced
Robotic Systems, 286(10).
Shorten, R. (2007). On Quadratic Stability of State-
dependent Planar Switching Systems. Forschungs-
berichte der Fakult¨at IV - Elektrotechnik und Infor-
matik // Technische Universit¨at Berlin. Techn. Univ.,
Fak. IV, Elektrotechnik und Informatik.
Sun, Z. (2006). Switched linear systems: Control and De-
sign. Springer.
Sun, Z. and Ge, S. S. (2011). Stability theory of switched
dynamical systems. Springer.
Tejado, I., Val´erio, D., Pires, P., and J., M. (2013a). Optimal
Feedback Control for Predicting Dynamic Stiffness
During Arm Movement. Mechatronics, 23(7):805–
812.
Tejado, I., Valrio, D., Pires, P., and Martins, J. (2013b).
Fractional order human arm dynamics with variabil-
ity analyses. Mechatronics, 23(7):805–812.
Ueyama, Y. and Miyashita, E. (2014). Optimal Feedback
Control for Predicting Dynamic Stiffness During Arm
Movement. Industrial Electronics, IEEE Transactions
on, 61(2):1044–1052.
Zawiski, R. and Błachuta, M. (2012). Model development
and optimal control of quadrotor aerial robot. In Meth-
PECCS2015-5thInternationalConferenceonPervasiveandEmbeddedComputingandCommunicationSystems
96