Improving Physiological Signal Classification Using Logarithmic Quantization and a Progressive Calibration Technique
Nick Merrill, Thomas Maillart, Benjamin Johnson, John Chuang
2015
Abstract
This paper exhibits two methods for decreasing the time associated with training a machine learning classifier on biometric signals. Using electroencephalography (EEG) data obtained from a consumer-grade headset with a single electrode, we show that these methods produce significant gains in the computational performance and calibration time of a simple brain-computer interface (BCI) without significantly decreasing accuracy. We discuss the relevance of reduced feature vector size to the design of physiological computing applications.
References
- Ball, T., Kern, M., Mutschler, I., Aertsen, A., and SchulzeBonhage, A. (2009). Signal quality of simultaneously recorded invasive and non-invasive eeg. Neuroimage, 46(3):708-716.
- Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., and Mller, K.-R. (2007). A note on brain actuated spelling with the berlin brain-computer interface. In Stephanidis, C., editor, Universal Access in Human-Computer Interaction. Ambient Interaction, number 4555 in Lecture Notes in Computer Science, pages 759-768. Springer Berlin Heidelberg.
- Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167.
- Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M. K., Rabbi, M., and Raizada, R. D. (2010). NeuroPhone: brain-mobile phone interface using a wireless EEG headset. In Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on mobile handhelds, page 38. ACM.
- Carrino, F., Dumoulin, J., Mugellini, E., Khaled, O., and Ingold, R. (2012). A self-paced BCI system to control an electric wheelchair: Evaluation of a commercial, low-cost EEG device. In Biosignals and Biorobotics Conference (BRC), 2012 ISSNIP, pages 1-6.
- Chuang, J., Nguyen, H., Wang, C., and Johnson, B. (2013). I think, therefore i am: Usability and security of authentication using brainwaves. In Adams, A., Brenner, M., and Smith, M., editors, Financial Cryptography and Data Security, volume 7862 of Lecture Notes in Computer Science, pages 1-16. Springer Berlin Heidelberg.
- Crowley, K., Sliney, A., Pitt, I., and Murphy, D. (2010). Evaluating a brain-computer interface to categorise human emotional response. In ICALT, page 276278.
- De Vos, M. and Debener, S. (2014). Mobile eeg: towards brain activity monitoring during natural action and cognition. International journal of psychophysiology: official journal of the International Organization of Psychophysiology, 91(1):1-2.
- Dornhege, G. (2007). Toward Brain-computer Interfacing. MIT Press.
- Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res., 9:18711874.
- Friedrich, E. V., Neuper, C., and Scherer, R. (2013). Whatever works: A systematic user-centered training protocol to optimize brain-computer interfacing individually. PloS one, 8(9):e76214.
- Garrett, D., Peterson, D., Anderson, C., and Thaut, M. (2003). Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2):141-144.
- Grierson, M. and Kiefer, C. (2011). Better brain interfacing for the masses: progress in event-related potential detection using commercial brain computer interfaces. page 1681. ACM Press.
- Hill, N. J., Ricci, E., Haider, S., McCane, L. M., Heckman, S., Wolpaw, J. R., and Vaughan, T. M. (2014). A practical, intuitive braincomputer interface for communicating yes or no by listening. Journal of Neural Engineering, 11(3):035003.
- Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1):437.
- Johnson, B., Maillart, T., and Chuang, J. (2014). My thoughts are not your thoughts. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, UbiComp 7814 Adjunct, pages 1329-1338, New York, NY, USA. ACM.
- Larsen, E. A. and Hokl, C.-s. J. (2011). Classification of EEG Signals in a Brain- Computer Interface System.
- Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnaldi, B., et al. (2007). A review of classification algorithms for EEG-based braincomputer interfaces. Journal of neural engineering, 4.
- McFarland, D. J. and Wolpaw, J. R. (2011). Brain-computer interfaces for communication and control. Commun ACM, 54(5):60-66.
- Millan, J. D. R., Rupp, R., Muller-Putz, G. R., MurraySmith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kubler, A., Leeb, R., Neuper, C., Muller, K.-R., and Mattia, D. (2010). Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front Neurosci, 4.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, . (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:28252830.
- Vidaurre, C. and Blankertz, B. (2010). Towards a cure for BCI illiteracy. Brain topography, 23(2):194198.
- Vidaurre, C., Sannelli, C., Mller, K.-R., and Blankertz, B. (2011). Machine-learning-based coadaptive calibration for brain-computer interfaces. Neural Computation, 23(3):791-816.
Paper Citation
in Harvard Style
Merrill N., Maillart T., Johnson B. and Chuang J. (2015). Improving Physiological Signal Classification Using Logarithmic Quantization and a Progressive Calibration Technique . In Proceedings of the 2nd International Conference on Physiological Computing Systems - Volume 1: PhyCS, ISBN 978-989-758-085-7, pages 44-51. DOI: 10.5220/0005238800440051
in Bibtex Style
@conference{phycs15,
author={Nick Merrill and Thomas Maillart and Benjamin Johnson and John Chuang},
title={Improving Physiological Signal Classification Using Logarithmic Quantization and a Progressive Calibration Technique},
booktitle={Proceedings of the 2nd International Conference on Physiological Computing Systems - Volume 1: PhyCS,},
year={2015},
pages={44-51},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005238800440051},
isbn={978-989-758-085-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 2nd International Conference on Physiological Computing Systems - Volume 1: PhyCS,
TI - Improving Physiological Signal Classification Using Logarithmic Quantization and a Progressive Calibration Technique
SN - 978-989-758-085-7
AU - Merrill N.
AU - Maillart T.
AU - Johnson B.
AU - Chuang J.
PY - 2015
SP - 44
EP - 51
DO - 10.5220/0005238800440051