future modifications of the algorithm, we will inves-
tigate to what extent the inclinations of triangles in
3D world could contribute to a better initialization of
planes to be swept.
REFERENCES
Belhumeur, P. (1996). A Bayesian approach to binocular
stereopsis. International Journal of Computer Vision,
19(3):237–260.
Bodensteiner, C. and Arens, M. (2012). Real-time 2D
video/3D LiDAR registration. In International Con-
ference on Pattern Recognition (ICCV), pages 2206–
2209, Tsukuba (Japan).
Boykov, Y., Veksler, O., and Zabih, R. (1998). A Vari-
able Window Approach to Early Vision. Transac-
tions on Pattern Analysis and Machine Intelligence,
20(12):1283–1294.
Bulatov, D., Wernerus, P., and Heipke, C. (2011). Multi-
view dense matching supported by triangular meshes.
ISPRS Journal of Photogrammetry and Remote Sens-
ing, 66(6):907–918.
Delong, A., Osokin, A., Isack, H. N., and Boykov, Y.
(2012). Fast approximate energy minimization with
label costs. International Journal of Computer Vision,
96(1):1–27.
Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and
robust multiview stereopsis. Transactions on Pattern
Analysis and Machine Intelligence, 32(8):1362–1376.
Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz,
S. M. (2007). Multi-view stereo for community photo
collections. In International Conference on Computer
Vision (ICCV), pages 1–8.
Hansen, P. C. and O’Leary, D. P. (1993). The use of
the L-curve in the regularization of discrete ill-posed
problems. SIAM Journal on Scientific Computing,
14(6):1487–1503.
Heinrichs, M., Hellwich, O., and Rodehorst, V. (2007).
Efficient semi-global matching for trinocular stereo.
Photogrammetrie – Fernerkundung – Geoinforma-
tion, 6:405–414.
Hirschm¨uller, H. (2008). Stereo processing by semi-
global matching and mutual information. Transac-
tions on Pattern Analysis and Machine Intelligence,
30(2):328–341.
Hirschm¨uller, H. and Scharstein, D. (2009). Evaluation of
stereo matching costs on images with radiometric dif-
ferences. Transactions on Pattern Analysis and Ma-
chine Intelligence, 31(9):1582–1599.
Irschara, A., Rumpler, M., Meixner, P., Pock, T., and
Bischof, H. (2012). Efficient and globally optimal
multi view dense matching for aerial images. ISPRS
Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences.
Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling
occlusions in dense multi-view stereo. In Computer
Vision and Pattern Recognition (CVPR), volume 1.
Koch, R., Pollefeys, M., and Van Gool, L. (1998). Multi
viewpoint stereo from uncalibrated video sequences.
In European Conference on Computer Vision (ECCV),
pages 55–71. Springer.
Kolmogorov, V. (2003). Graph based algorithms for scene
reconstruction from two or more views. PhD thesis,
Cornell University.
Kolmogorov, V. (2006). Convergent tree-reweighted mes-
sage passing for energy minimization. Transac-
tions on Pattern Analysis and Machine Intelligence,
28(10):1568–1583.
Nakamura, Y., Matsuura, T., Satoh, K., and Ohta, Y.
(1996). Occlusion detectable stereo-occlusion pat-
terns in camera matrix. In Computer Vision and Pat-
tern Recognition (CVPR), pages 371–378.
Okutomi, M. and Kanade, T. (1993). A multiple-baseline
stereo. Transactions on Pattern Analysis and Machine
Intelligence, 15(4):353–363.
Pollefeys, M., Nist´er, D., Frahm, J.-M., Akbarzadeh, A.,
Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim,
S.-J., Merrell, P., Salmi, C., Sinha, S., Talton, B.,
Wang, L., Yang, Q., Stew´enius, H., Yang, R., Welch,
G., and Towles, H. (2008). Detailed real-time urban
3D reconstruction from video. International Journal
of Computer Vision, 78(2-3):143–167.
Rothermel, M., Bulatov, D., Haala, N., and Wenzel, K.
(2014). Fast and robust generation of semantic ur-
ban terrain models from UAV video streams. In Inter-
national Conference on Pattern Recognition (ICPR),
pages 592–597.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1):7–42.
Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003).
Stereo matching using belief propagation. Transac-
tions on Pattern Analysis and Machine Intelligence,
25(7):787–800.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-
mogorov, V., Agarwala, A., Tappen, M., and Rother,
C. (2006). A comparative study of energy minimiza-
tion methods for markov random fields. In European
Conference on Computer Vision (ECCV), pages 16–
29. Springer.
Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S.
(2005). Map estimation via agreement on trees:
message-passing and linear programming. Transac-
tions on Information Theory, 51(11):3697–3717.
Zhang, H.,
ˇ
Cech, J., Wu, F., and Hu, Z. (2003). A lin-
ear trinocular rectification method for accurate stereo-
scopic matching. In British Machine Vision Conf.,
2003, pages 281–290.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
402