REFERENCES
Amidror, I. (2002). Scattered data interpolation methods for
electronic imaging systems: a survey. J. Electronic
Imaging, 11(2):157–176.
Bancroft, J. D. and Gamble, M. (2008). Theory and practice
of histological techniques. Elsevier Health Sciences.
Bartels, P., Thompson, D., Bibbo, M., and Weber, J. (1992).
Bayesian belief networks in quantitative histopathol-
ogy. Anal Quant Cytol Histol, 14(6):459–73.
Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Cabebe, E. C. and Mehta, V. K. (2008). Gastric can-
cer. http://emedicine.medscape.com/article/278744-
overview#showall.
Chen, Y. W. and Lin, C. J. (2006). Combining SVMs with
various feature selection strategies. In Feature extrac-
tion, pages 315–324. Springer.
Chua, T. and Merrett, N. (2012). Clinicopathologic factors
associated with HER2-positive gastric cancer and its
impact on survival outcomes–a systematic review. Int
J Cancer, 130(12):2845–56.
Diamond, J., Anderson, N., Bartels, P., Montironi, R., and
Hamilton, P. (2004). The use of morphological char-
acteristics and texture analysis in the identification
of tissue composition in prostatic neoplasia. Human
Pathology, 35(9):1121–1131.
Hamilton, P., Anderson, N., Bartels, P., and Thompson, D.
(1994). Expert system support using bayesian be-
lief networks in the diagnosis of fine needle aspira-
tion biopsy specimens of the breast. J Clin Pathol,
47(4):329–36.
Haralick, R. M., Shanmugam, K. S., and Dinstein, I.
(1973). Textural features for image classification.
IEEE Transactions on Systems, Man and Cybernetics,
3(6):610–621.
Hufnagl, P., Schlosser, A., and Voss, K. (1984). Merkmale
der Form, Gr
¨
oβe und Lage digitaler objekte. Bild und
Ton., 37:293–298.
Kong, J., Sertel, O., Shimada, H., Boyer, K. L., Saltz, J. H.,
and Gurcan, M. N. (2009). Computer-aided evaluation
of neuroblastoma on whole-slide histology images:
Classifying grade of neuroblastic differentiation. Pat-
tern Recogn., 42(6):1080–1092.
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Su-
pervised machine learning: A review of classification
techniques. In Emerging Artificial Intelligence Appli-
cations in Computer Engineering, pages 3–24. IOS
Press.
Nordqvist, C. (2013). What is Stomach Can-
cer? What is Gastric Cancer? Medi-
cal News Today. MediLexicon, Intl. http://
www.medicalnewstoday.com/articles/257341.php.
Ramesh, N., Dangott, B., Salama, M. E., and Tasdizen, T.
(2012). Isolation and two-step classification of normal
white blood cells in peripheral blood smears. Journal
of pathology informatics, 3.
Rani, S., Kannammal, A., Nirmal, M., Prabhu, K., and Ku-
mar, R. (2010). Multi-feature prostate cancer diagno-
sis of histological images using advanced image seg-
mentation. IJMEI, 2(4):408–416.
Roula, M., Diamond, J., Bouridane, A., Miller, P., and
Amira, A. (2002). A multispectral computer vi-
sion system for automatic grading of prostatic neopla-
sia. In Proceedings IEEE International Symposium on
Biomedical Imaging, pages 193–196.
Shuttleworth, J., Todman, A., Naguib, R., Newman, B., and
Bennett, M. (2002a). Colour texture analysis using co-
occurrence matrices for classification of colon cancer
images. In IEEE Canadian Conference on Electrical
and Computer Engineering, volume 2, pages 1134–
1139.
Shuttleworth, J., Todman, A., Naguib, R., Newman, B.,
and Bennett, M. (2002b). Multiresolution colour tex-
ture analysis for classifying colon cancer images. In
Medicine and Biology, 24th Annual Conference and
the Annual Fall Meeting of the Biomedical Engineer-
ing Society EMBS/BMES, Proceedings of the Second
Joint, volume 2, pages 1118,1119.
VMscope GmbH (2010). Vmscope products.
http://vmscope.com/produkte.html.
Warneke, V. S., Behrens, H., B
¨
oger, C., Becker, T., Lordick,
F., Ebert, M., and R
¨
ocken, C. (2013). Her2/neu test-
ing in gastric cancer: evaluating the risk of sampling
errors. Annals of Oncology, 24(3):725–733.
Weind, K., Maier, C., Rutt, B., and Moussa, M. (1998). In-
vasive carcinomas and fibroadenomas of the breast:
comparison of microvessel distributions–implications
for imaging modalities. Radiology, 208(2):477–83.
Wienert, S., Heim, D., Kotani, M., Lindequist, B., Sten-
zinger, A., Ishii, M., Hufnagl, P., Beil, M., Dietel, M.,
Denkert, C., and Klauschen, F. (2013). Cognitionmas-
ter: an object-based image analysis framework. Diag-
nostic Pathology, 8(1):1–8.
Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M.,
Hufnagl, P., Dietel, M., Denkert, C., and Klauschen,
F. (2012). Detection and segmentation of cell nuclei
in virtual microscopy images: A minimum-model ap-
proach. Scientific Reports, 2.
Zerbe, N. (2008). Analyse serieller histologischer Schnitte
im Hinblick auf die automatische Bestimmung gle-
ichartiger Partikel benachbarter Schnittstufen. Diplo-
marbeit, Fachhochschule f
¨
ur Technik und Wirtschaft
Berlin.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
46