local, continuous refinement may be a desirable
second step. This we leave to future work.
Full source code to replicate the exper-
iments in this paper are available at http://
github.com/sebhaner/nbv
discrete.
REFERENCES
Blaer, P. and Allen, P. (2007). Data acquisition and view
planning for 3-d modeling tasks. In Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pages 417–422.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, New York, NY,
USA.
Choi, I.-C., Kim, S.-I., and Kim, H.-S. (2003). A genetic
algorithm with a mixed region search for the asym-
metric traveling salesman problem. Computers & Op-
erations Research, 30(5):773 – 786.
Dahl, J. (2012). Semidefinite optimization using MOSEK.
In 21st International Symposium on Mathematical
Programming.
Davoodi, M., Panahi, F., Mohades, A., and Hashemi, S. N.
(2013). Multi-objective path planning in discrete
space. Applied Soft Computing, 13(1):709 – 720.
Dunn, E., Olague, G., and Lutton, E. (2006). Parisian cam-
era placement for vision metrology. Pattern Recogni-
tion Letters, 27(11):1209–1219.
Dunn, E., van den Berg, J., and Frahm, J.-M. (2009). Devel-
oping visual sensing strategies through next best view
planning. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on,
pages 4001–4008.
Englot, B. and Hover, F. (2010). Inspection planning for
sensor coverage of 3d marine structures. In IROS,
pages 4412–4417. IEEE.
Foix, S., Kriegel, S., Fuchs, S., Aleny, G., and Torras, C.
(2012). Information-gain view planning for free-form
object reconstruction with a 3d tof camera. In Ad-
vanced Concepts for Intelligent Vision Systems, vol-
ume 7517 of Lecture Notes in Computer Science,
pages 36–47. Springer Berlin Heidelberg.
Fraser, C. S. (1984). Network Design Considerations for
Non-Topographic Photogrammetry. Photo Eng. and
Remote Sensing, 50(8):1115–1126.
Golovin, D. and Krause, A. (2010). Adaptive submodular-
ity: A new approach to active learning and stochastic
optimization. In 23rd Annual Conference on Learning
Theory, pages 333–345.
Haner, S. and Heyden, A. (2011). Optimal view path plan-
ning for visual SLAM. In Heyden, A. and Kahl, F., ed-
itors, Image Analysis, volume 6688 of Lecture Notes
in Computer Science, pages 370–380. Springer Berlin
/ Heidelberg.
Hollinger, G. A., Englot, B., Hover, F., Mitra, U., and
Sukhatme, G. S. (2012). Uncertainty-driven view
planning for underwater inspection. In ICRA, pages
4884–4891. IEEE.
Lawler, G. (2012). Intersections of Random Walks. Modern
Birkh¨auser Classics. Springer-Verlag New York.
L¨ofberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in MATLAB. In Proceedings of the
CACSD Conference, Taipei, Taiwan.
Low, K.-L. and Lastra, A. (2006). An adaptive hierarchi-
cal next-best-view algorithm for 3d reconstruction of
indoor scenes. 14th Pacific Conference on Computer
Graphics and Applications, Taipei, Taiwan.
Montgomery, D. C. (2000). Design and Analysis of Exper-
iments. John Wiley & Sons Canada, Ltd., 5th edition.
Papadimitriou, C. H. and Steiglitz, K. (1998). Combinato-
rial Optimization: Algorithms and Complexity. Dover
Publications.
Schmitt, L. J. and Amini, M. M. (1998). Performance
characteristics of alternative genetic algorithmic ap-
proaches to the traveling salesman problem using path
representation: An empirical study. European Journal
of Operational Research, 108(3):551 – 570.
Schrijver, A. (2004). Combinatorial Optimization : Polyhe-
dra and Efficiency (Algorithms and Combinatorics).
Springer.
Singh, A., Krause, A., Guestrin, C., and Kaiser, W. J.
(2009). Efficient informative sensing using multiple
robots. J. Artif. Intell. Res. (JAIR), 34:707–755.
Trummer, M., Munkelt, C., and Denzler, J. (2010). Online
Next-Best-View Planning for Accuracy Optimization
Using an Extended E-Criterion. In Proc. International
Conference on Pattern Recognition (ICPR’10), vol-
ume 0, pages 1642–1645. IEEE Computer Society.
Vasquez-Gomez, J. I., Sucar, L. E., and Murrieta-Cid, R.
(2013). Hierarchical ray tracing for fast volumetric
next-best-view planning. 2013 International Confer-
ence on Computer and Robot Vision, 0:181–187.
Wenhardt, S., Deutsch, B., Hornegger, J., Niemann, H., and
Denzler, J. (2006). An Information Theoretic Ap-
proach for Next Best View Planning in 3-D Recon-
struction. In Proc. International Conference on Pat-
tern Recognition (ICPR’06), volume 1, pages 103–
106. IEEE Computer Society.
DiscreteOptimalViewPathPlanning
419