Bragg Grating Solitons in Semilinear Dual-core System with Cubic-Quintic Nonlinearity

Jahirul Islam, Javid Atai

2015

Abstract

The existence and stability of Bragg grating solitons in a coupler, where one core is equipped with a Bragg grating (BG) and has cubic-quintic nonlinearity and the other is linear, are studied. When the group velocity term in the linear core is zero (i.e. c = 0), the system's linear spectrum contains two separate bandgaps. It is found that soliton solutions exist throughout both bandgaps. On the other hand, when the group velocity term in the linear core is nonzero (c ≠ 0), the spectrum consists of three gaps: a genuine central gap and upper and lower gaps that overlap with one branch of continuous spectrum. In this case, soliton solutions exist throughout the upper and lower gaps but not in the central gap. The system supports two disjoint families of solitons (referred as Type 1 and Type 2) that are separated by a boundary. Stability of solitons is investigated by means of systematic numerical stability analysis. It is found that Type 2 solitons are always unstable. On the other hand, there exist vast regions in the upper and lower bandgaps where stable Type 1 solitons exist.

References

  1. Aceves, A. B. and Wabnitz, S. (1989). Self induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A, 141:37-42.
  2. Agrawal, G. P. (1995). Nonlinear Fiber Optics. Academic Press, San Diego, 2nd edition.
  3. Atai, J. (2004). Interaction of bragg grating solitons in a cubic-quintic medium. J. Opt. B Quantum Semiclass., 6:S177-S181.
  4. Atai, J. and Malomed, B. A. (2000). Bragg-grating solitons in a semilinear dual-core system. Phys. Rev. E, 62:8713-8718.
  5. Atai, J. and Malomed, B. A. (2001). Families of bragggrating solitons in a cubic-quintic medium. Phys. Lett. A, 284:247-252.
  6. Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smerktala, F., and Sanchez, F. (2003). Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun., 219:427-433.
  7. Christadoulides, D. N. and Joseph, R. I. (1989). Slow bragg solitons in nonlinear periodic structures. Phys. Rev. Lett., 62:1746-1749.
  8. Conti, C., Trillo, S., and Assanto, G. (1997). Doubly resonant bragg simultons via second-harmonic generation. Phys. Rev. Lett., 78:2341-2344.
  9. Dasanayaka, S. and Atai, J. (2010). Stability of bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Lett. A, 375:225-229.
  10. Dasanayaka, S. and Atai, J. (2013a). Moving bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys. Rev. E, 88:022921.
  11. Dasanayaka, S. and Atai, J. (2013b). Stability and collisions of moving bragg grating solitons in a cubic-quintic nonlinear medium. J. Opt. Soc. Am. B, 30:396-404.
  12. Desterke, C. M. and Sipe, J. E. (1994). Progress in Optics, 33:203-260.
  13. Eggleton, B. J., Desterke, C. M., and Slusher, R. E. (1997). Nonlinear pulse propagation in bragg gratings. J. Opt. Soc. Am. B, 14:2980-2993.
  14. Kashyap, R. (1999). Fiber Bragg Gratings. Academic Press, San Diego.
  15. Lawrence, B. L., Cha, M., Torruellas, W. E., Stegeman, G. I., Etemad, S., Baker, G., and Kajzar, F. (1994). Measurement of the complex nonlinear refractiveindex of single-crystal p-toluene sulfonate at 1064- nm. Appl. Phys. Lett., 64:2773-2775.
  16. Loh, W., Laming, R., Robinson, N., Cavaciuti, A., C. Vaninetti, J. A., Zervis, M., and Cole, M. (1996). Dispersion compensation over distances in excess of 500 km for 10 gb/s systems using chirped fiber gratings. IEEE Photon. Technol. Lett., 8:944-946.
  17. Maimistov, A. I., Malomed, B. A., and Desyanitkov, A. (1999). A potential of incoherent attraction between multidimensional solitons. Phys. Lett. A, 254:179- 184.
  18. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (1998). Solitary waves in coupled nonlinear waveguides with bragg gratings. J. Opt. Soc. Am. B, 15:1685-1692.
  19. Mak, W. C. K., Malomed, B. A., and Chu, P. L. (2003). Formation of a standing-light pulse through collision of gap solitons. Phys. Rev. E, 68:02669.
  20. Mok, J. T., Desterke, C. M., Litler, I. C. M., and Eggleton, B. J. (2006). Dispersionless slow light using gap solitons. Nat. Phys., 2:775-780.
  21. Neill, D. R. and Atai, J. (2006). Collision dynamics of gap solitons in kerr media. Phys. Lett. A, 353:416-421.
  22. Neill, D. R., Atai, J., and Malomed, B. A. (2007). Gap solitons in a hollow optical fiber in the normal dispersion regime. Phys. Lett. A, 367:73-82.
  23. Radic, S., George, N., and Agrawal, G. P. (1995). Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures. J. Opt. Soc. Am. B, 12:671-680.
  24. Sankey, N. D., Prelewitz, D. F., and Brown, T. G. (1992). All-optical switching in a nonlinear periodicwaveguide structure. Appl. Phys. Lett., 60:1427-1429.
  25. Taverner, D., Broderick, N. G. R., Richardson, D. J., Laming, R. I., and Ibsen, M. (1998). Nonlinear selfswitching and multiple gap-soliton formation in a fiber bragg grating. Opt. Lett., 23:328-330.
  26. Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., and Nie, Y. (2002). Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B, 19:369-375.
Download


Paper Citation


in Harvard Style

Islam J. and Atai J. (2015). Bragg Grating Solitons in Semilinear Dual-core System with Cubic-Quintic Nonlinearity . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 55-59. DOI: 10.5220/0005257800550059


in Bibtex Style

@conference{photoptics15,
author={Jahirul Islam and Javid Atai},
title={Bragg Grating Solitons in Semilinear Dual-core System with Cubic-Quintic Nonlinearity},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={55-59},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005257800550059},
isbn={978-989-758-093-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Bragg Grating Solitons in Semilinear Dual-core System with Cubic-Quintic Nonlinearity
SN - 978-989-758-093-2
AU - Islam J.
AU - Atai J.
PY - 2015
SP - 55
EP - 59
DO - 10.5220/0005257800550059