REFERENCES
Archambault, D., Purchase, H., and Pinaud, B. (2011). An-
imation, small multiples, and the effect of mental map
preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics, 17(4):539–
552.
Beck, F., Burch, M., and Diehl, S. (2009). Towards an aes-
thetic dimensions framework for dynamic graph visu-
alisations. In Proceedings of International Conference
on Information Visualisation (IV), pages 592–597.
Beck, F., Burch, M., and Diehl, S. (2013). Matching appli-
cation requirements with dynamic graph visualization
profiles. In Proceedings of International Conference
on Information Visualisation (IV), pages 12–18.
Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014a).
The state of the art in visualizing dynamic graphs. In
EuroVis State-of-the-Art Reports, EuroVis STAR.
Beck, F., Burch, M., Munz, T., Silvestro, L. D., and
Weiskopf, D. (2014b). Generalized Pythagoras trees
for visualizing hierarchies. In Proceedings of the In-
ternational Conference on Information Visualization
Theory and Applications, pages 17–28.
Brandes, U. and Corman, S. R. (2003). Visual unrolling
of network evolution and the analysis of dynamic dis-
course. Information Visualization, 2(1):40–50.
Brandes, U. and Nick, B. (2011). Asymmetric relations in
longitudinal social networks. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2283–
2290.
Burch, M. and Diehl, S. (2008). TimeRadarTrees: Visualiz-
ing dynamic compound digraphs. Computer Graphics
Forum, 27(3):823–830.
Burch, M., Raschke, M., and Weiskopf, D. (2010). Indented
Pixel Tree Plots. In Proceedings of the International
Symposium on Advances in Visual Computing, pages
338–349.
Burch, M., Schmidt, B., and Weiskopf, D. (2013). A matrix-
based visualization for exploring dynamic compound
digraphs. In Proceedings of International Conference
on Information Visualisation (IV), pages 66–73.
Burch, M., Vehlow, C., Beck, F., Diehl, S., and Weiskopf,
D. (2011). Parallel edge splatting for scalable dynamic
graph visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 17(12):2344–2353.
Burch, M. and Weiskopf, D. (2011). Visualizing dynamic
quantitative data in hierarchies - TimeEdgeTrees: At-
taching dynamic weights to tree edges. In Proceedings
of the International Conference on Information Visu-
alization Theory and Applications, pages 177–186.
Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van
Wijk, J. J., and van Deursen, A. (2007). Understand-
ing execution traces using massive sequence and cir-
cular bundle views. In Proceedings of International
Conference on Program Comprehension, pages 49–
58.
Diehl, S. and G
¨
org, C. (2002). Graphs, they are changing.
In Proceedings of Graph Drawing, pages 23–30.
Frishman, Y. and Tal, A. (2007). Online dynamic graph
drawing. In Proceedings of EuroVis, pages 75–82.
Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.
Holten, D., Cornelissen, B., and van Wijk, J. J. (2007).
Trace visualization using hierarchical edge bundles
and massive sequence views. In Proceedings of VIS-
SOFT, pages 47–54.
Jerding, D. F. and Stasko, J. T. (1995). The information mu-
ral: a technique for displaying and navigating large in-
formation spaces. In Proceedings of INFOVIS, pages
43–50.
Jerding, D. F. and Stasko, J. T. (1998). The information mu-
ral: A technique for displaying and navigating large
information spaces. IEEE Transactions on Visualiza-
tion and Computer Graphics, 4(3):257–271.
Kruskal, J. and Landwehr, J. (1983). Icicle plots: Better
displays for hierarchical clustering. American Statis-
tician, 37(2):162–168.
Purchase, H. C., Hoggan, E., and G
¨
org, C. (2007). How
important is the “mental map”? – An empirical in-
vestigation of a dynamic graph layout algorithm. In
Proceedings of Graph Drawing, pages 184–195.
Rosenholtz, R., Li, Y., and Nakano, L. (2007). Measuring
visual clutter. Journal of Vision, 7(2):1–22.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proceedings of the IEEE Symposium on Visual Lan-
guages, pages 336–343.
Stein, K., Wegener, R., and Schlieder, C. (2010). Pixel-
oriented visualization of change in social networks.
In Proceedings of the International Conference on Ad-
vances in Social Networks Analysis and Mining, pages
233–240.
Tufte, E. R. (1992). The visual display of quantitative in-
formation. Graphics Press.
van den Elzen, S., Holten, D., Blaas, J., and van Wijk,
J. (2013). Reordering massive sequence views: En-
abling temporal and structural analysis of dynamic
networks. In Proceedings of IEEE Pacific Visualiza-
tion Symposium, pages 33–40.
Vehlow, C., Burch, M., Schmauder, H., and Weiskopf, D.
(2013). Radial layered matrix visualization of dy-
namic graphs. In Proceedings of International Con-
ference on Information Visualisation, pages 51–58.
IVAPP2015-InternationalConferenceonInformationVisualizationTheoryandApplications
100