Nanophotonic Biosensors Within Lab on Chip Optical Systems
Daniel Hill
2015
Abstract
For ring resonator based sensors, volumetric limits of detection (LoD) of 510–6 RIU and 8.3x10−6 RIU (refractive index units) for sensitivities of 246nm/RIU and 2169nm/RIU were reported from FP6 SABIO (at 1.31µm) and FP7 InTopSens (at 1.55µm) respectively. These compare well to the state of art of 7.6×10−7 RIU for a sensitivity of 163 nm/RIU, as does the porous alumina based membrane sensors in FP7 Positive with their LoD of 5x10-6 RIU. More interestingly for the membrane sensors, the standard deviation of their measured values was below 5% and their flow through design with lateral distances to the sensor surface less than a diffusion length permit fast response times, short assay times and the use of small sample volumes (< 100 µl). For protein binding recognition, within SABIO a surface LoD of 0.9 pg/mm2 for anti-BSA on a gluteraldehyde-covered surface was recorded, corresponding to a 125ng/ml anti-BSA solution, whilst in InTopSens 5pg/mm2 and 10ng/ml for biotin on a streptavidin coated surface was seen. For an assay of β-lactoglobulin - anti-β-lactoglobulin - anti-rabbit-IgG –streptavidin conjugated CdSe quantum dots the Positive sensors demonstrated a noise floor for individual measurements of 3.7ng/ml (25pM) for total assay times of under one hour.
References
- X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun. (2008). Sensitive optical biosensors for unlabeled targets: A review, Anal. Chim. Acta, 620, (1/2), p8-p26.
- D. Hill. (2011). Advances in nanophotonic sensing technologies during three international label-free labon-chip projects, BioNanoScience, 1, p162-p172.
- D. Janasek, J. Franzke, and A. Manz. (2006). Scaling and the design of miniaturized chemical-analysis systems, Nature 442, p374-p380.
- F. S. Ligler, (2009). Perspective on optical biosensors and integrated sensor systems, Anal. Chem., 81, (2), p519- p526.
- A. Brecht and G. Gauplitz. (1995). Biosensors and Biolectronics, 10, p923-p936.
- D. Markov, D. Begari and D. J. Bornhop. (2002). Breaking the 10-7 Barrier for RI Measurements in Nanoliter Volumes, Anal. Chem., 74, p5438-p5441.
- K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga. (2008). Silicon photonic biosensors for lab-on-a-chip applications, Advances in Optical Technologies, p383927.1-p383927.6.
- J. A. De Feijter, J. Benjamins and F. A. Veer. (1978). Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface, Biopolymers 17, (7), p1759-p1772.
- K. Tiefenthaler, and W. Lukosz. Integrated optical switches and gas sensors, (1984). Opt. Lett. 9, p137-p139.
- W. Lukosz, and K. Tiefenthaler. (1988). Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors, Sensors and Actuators 15, (3), p273-p284..
- K. Tiefenthaler, and W. Lukosz. (1989). Sensitivity of grating couplers as integrated optical chemical sensors, J. OSA B: Opt. Phys. 6, (2), p209-p220.
- V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson. (2004). Guiding and confining light in void nanostructure, Opt. Lett. 29, (11), p1209-p1211.
- Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson. (2004). Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett., 29 (14), p1626-p1628.
- H. Sohlström, K.Gylfason, D. Hill. (2010). Real-time labelfree biosensing with integrated planar waveguide ringresonators, Proc. SPIE 7719, 77190B.
- Gylfason, K. G., Carlborg, C. F., Kazmierczak, A., Dortu, F., Sohlström, H., Vivien, L., Barrios, C. A., van der Wijngaart, W., and Stemme, G., “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array”, Opt. Expr. 18(4), 3226-3237 (2010).
- C. F. Carlborg, K. B. Gylfason, A. Kamierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart. (2010). A packaged optical slotwaveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip. 10, p281- p290.
- A. Kazmierczak, F. Dortu, O. Schrevens, D. Giannone, L. Vivien, D. M. Morini, D. Bouville, E. Cassan, K. g. Gylfason, H. Sohlström, B. Sanchez, A. Griol, and D. Hill. (2009) Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system. Opt. Eng. 48, (1), 014401.
- K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets. (2007). Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Expr. 15, (12), p7610-p7615.
- T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets. and P. Bienstman. (2009) Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. J. IEEE Photonics 1, (3), p197-p204.
- T. Claes, W. Bogaerts, and P. Bienstman. (2010). Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Optics Express, 18, (22), p22747.
- T. D. Lazzara, I. Mey, C. Steinem, A. Janshoff. (2011). Benefits and limitations of porous substrates as biosensors for protein adsorption, Anal. Chem., 83, (14), p5624-p5630.
- M. M. Orosco, C. Pacholski, M.J. Sailor. (2009). Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nature Nanotechnology, 4, p255.
- C. K. Tsang, T. L. Kelly, M. J. Sailor, Y. Y. Li, (2012). Highly Stable Porous Silicon-Carbon Composites as Label-Free Optical Biosensors. ACS Nano, 6, p10546.
- S.D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor. (2009). A Label-Free Porous Alumina Interferometric Immunosensor. ACS Nano, 3, p3301.
- T. Kumeria, M. D. Kurkuri, K. R. Diener, L. Parkinson, D. Losic, (2012). Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosensors and Bioelectronics, 35, (1), 167.
- T. Kumeria, D. Losic, (2012). Controlling interferometric properties of nanoporous anodic aluminium oxide” Nanoscale Research Letters, 7, (88), p1.
- A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, H. Altug. (2010). Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Applied Physics Letters, 96, (2), p021101.
- Y. Guo, H. Li, K. Reddy, H.S. Shelar, V.R. Nittoor, X. Fan. (2011). Optofluidic Fabry-Perot cavity biosensor with integrated flow-through micro-/nanochannels. Applied Physics Letters, 98, (4), p041104.
- J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. Martínez-Pastor. (2011). Birefringent porous silicon membranes for optical sensing. Opt. Express, 19, (27), p26106.
- J. Álvarez, P. Bettotti, N. Kumar, I. Suarez, D. Hill, J Martínez-Pastor. (2012). Highly-sensitive anisotropic porous silicon based optical sensors. Proc. SPIE, 8212, (1), p821209.
- J. Álvarez, L. Sola, G. Platt, M. Cretich, M. Swann, M. Chiari, D. Hill, and J. Martínez-Pastor. (2013). Realtime polarimetric biosensing using macroporous alumina membranes. Proc. SPIE 8765, Bio-MEMS and Medical Microdevices, p87650I.
- J. Álvarez, L. Sola, M. Cretich, M. J. Swann, K. B. Gylfason T. Volden, M. Chiari, D. Hill. (2014). Real time optical immunosensing with flow through porous alumina membranes. Journal of Sensors and Actuators B, 202, p834-p839.
- G. W. Platt, F. Damin, M. J. Swann, I. Metton, G. Skorski, M. Cretich, M. Chiari. (2014). Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosensors and Bioelectronics, 52, p82-p88.
- M. Cretich, D. Breda, F. Damin, M. Borghi, L Sola, S.M. Unlu, & M. Chiari. (2010). Allergen microarrays on high sensitivity silicon slides. Analytical and bioanalytical chemistry, 398, (4), p1723-p1733.
- L. Sola, J. Álvarez, M. Cretich, M. J. Swann, T. Volden, M. Chiari, D. Hill. (2015). Characterisation of porous alumina membranes for efficient, real-time, flow through biosensing. J. Membrane Science, 276, p128- p135.
- J. Álvarez, C. Serrano, D. Hill, and J. Martínez-Pastor. (2013). Real-time polarimetric optical sensor using macroporous alumina membranes. Opt. Lett. 38, (7), p1058-p1060.
- M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics In Quantum Electronics, 16, (3).
- K. B. Gylfason, (2010). Integrated Optical Slot-Waveguide Ring Resonator Sensor Arrays for Lab-on-Chip Applications. PhD Thesis TRITA-EE 2010:012, KTHRoyal institute of Technology, Stockholm.
Paper Citation
in Harvard Style
Hill D. (2015). Nanophotonic Biosensors Within Lab on Chip Optical Systems . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 60-68. DOI: 10.5220/0005259500600068
in Bibtex Style
@conference{photoptics15,
author={Daniel Hill},
title={Nanophotonic Biosensors Within Lab on Chip Optical Systems},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={60-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005259500600068},
isbn={978-989-758-093-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Nanophotonic Biosensors Within Lab on Chip Optical Systems
SN - 978-989-758-093-2
AU - Hill D.
PY - 2015
SP - 60
EP - 68
DO - 10.5220/0005259500600068