Nanophotonic Biosensors Within Lab on Chip Optical Systems

Daniel Hill

2015

Abstract

For ring resonator based sensors, volumetric limits of detection (LoD) of 510–6 RIU and 8.3x10−6 RIU (refractive index units) for sensitivities of 246nm/RIU and 2169nm/RIU were reported from FP6 SABIO (at 1.31µm) and FP7 InTopSens (at 1.55µm) respectively. These compare well to the state of art of 7.6×10−7 RIU for a sensitivity of 163 nm/RIU, as does the porous alumina based membrane sensors in FP7 Positive with their LoD of 5x10-6 RIU. More interestingly for the membrane sensors, the standard deviation of their measured values was below 5% and their flow through design with lateral distances to the sensor surface less than a diffusion length permit fast response times, short assay times and the use of small sample volumes (< 100 µl). For protein binding recognition, within SABIO a surface LoD of 0.9 pg/mm2 for anti-BSA on a gluteraldehyde-covered surface was recorded, corresponding to a 125ng/ml anti-BSA solution, whilst in InTopSens 5pg/mm2 and 10ng/ml for biotin on a streptavidin coated surface was seen. For an assay of β-lactoglobulin - anti-β-lactoglobulin - anti-rabbit-IgG –streptavidin conjugated CdSe quantum dots the Positive sensors demonstrated a noise floor for individual measurements of 3.7ng/ml (25pM) for total assay times of under one hour.

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun. (2008). Sensitive optical biosensors for unlabeled targets: A review, Anal. Chim. Acta, 620, (1/2), p8-p26.
  2. D. Hill. (2011). Advances in nanophotonic sensing technologies during three international label-free labon-chip projects, BioNanoScience, 1, p162-p172.
  3. D. Janasek, J. Franzke, and A. Manz. (2006). Scaling and the design of miniaturized chemical-analysis systems, Nature 442, p374-p380.
  4. F. S. Ligler, (2009). Perspective on optical biosensors and integrated sensor systems, Anal. Chem., 81, (2), p519- p526.
  5. A. Brecht and G. Gauplitz. (1995). Biosensors and Biolectronics, 10, p923-p936.
  6. D. Markov, D. Begari and D. J. Bornhop. (2002). Breaking the 10-7 Barrier for RI Measurements in Nanoliter Volumes, Anal. Chem., 74, p5438-p5441.
  7. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga. (2008). Silicon photonic biosensors for lab-on-a-chip applications, Advances in Optical Technologies, p383927.1-p383927.6.
  8. J. A. De Feijter, J. Benjamins and F. A. Veer. (1978). Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface, Biopolymers 17, (7), p1759-p1772.
  9. K. Tiefenthaler, and W. Lukosz. Integrated optical switches and gas sensors, (1984). Opt. Lett. 9, p137-p139.
  10. W. Lukosz, and K. Tiefenthaler. (1988). Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors, Sensors and Actuators 15, (3), p273-p284..
  11. K. Tiefenthaler, and W. Lukosz. (1989). Sensitivity of grating couplers as integrated optical chemical sensors, J. OSA B: Opt. Phys. 6, (2), p209-p220.
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson. (2004). Guiding and confining light in void nanostructure, Opt. Lett. 29, (11), p1209-p1211.
  13. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson. (2004). Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett., 29 (14), p1626-p1628.
  14. H. Sohlström, K.Gylfason, D. Hill. (2010). Real-time labelfree biosensing with integrated planar waveguide ringresonators, Proc. SPIE 7719, 77190B.
  15. Gylfason, K. G., Carlborg, C. F., Kazmierczak, A., Dortu, F., Sohlström, H., Vivien, L., Barrios, C. A., van der Wijngaart, W., and Stemme, G., “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array”, Opt. Expr. 18(4), 3226-3237 (2010).
  16. C. F. Carlborg, K. B. Gylfason, A. Kamierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart. (2010). A packaged optical slotwaveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip. 10, p281- p290.
  17. A. Kazmierczak, F. Dortu, O. Schrevens, D. Giannone, L. Vivien, D. M. Morini, D. Bouville, E. Cassan, K. g. Gylfason, H. Sohlström, B. Sanchez, A. Griol, and D. Hill. (2009) Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system. Opt. Eng. 48, (1), 014401.
  18. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets. (2007). Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Expr. 15, (12), p7610-p7615.
  19. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets. and P. Bienstman. (2009) Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. J. IEEE Photonics 1, (3), p197-p204.
  20. T. Claes, W. Bogaerts, and P. Bienstman. (2010). Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Optics Express, 18, (22), p22747.
  21. T. D. Lazzara, I. Mey, C. Steinem, A. Janshoff. (2011). Benefits and limitations of porous substrates as biosensors for protein adsorption, Anal. Chem., 83, (14), p5624-p5630.
  22. M. M. Orosco, C. Pacholski, M.J. Sailor. (2009). Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nature Nanotechnology, 4, p255.
  23. C. K. Tsang, T. L. Kelly, M. J. Sailor, Y. Y. Li, (2012). Highly Stable Porous Silicon-Carbon Composites as Label-Free Optical Biosensors. ACS Nano, 6, p10546.
  24. S.D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, M. J. Sailor. (2009). A Label-Free Porous Alumina Interferometric Immunosensor. ACS Nano, 3, p3301.
  25. T. Kumeria, M. D. Kurkuri, K. R. Diener, L. Parkinson, D. Losic, (2012). Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosensors and Bioelectronics, 35, (1), 167.
  26. T. Kumeria, D. Losic, (2012). Controlling interferometric properties of nanoporous anodic aluminium oxide” Nanoscale Research Letters, 7, (88), p1.
  27. A. A. Yanik, M. Huang, A. Artar, T. Y. Chang, H. Altug. (2010). Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Applied Physics Letters, 96, (2), p021101.
  28. Y. Guo, H. Li, K. Reddy, H.S. Shelar, V.R. Nittoor, X. Fan. (2011). Optofluidic Fabry-Perot cavity biosensor with integrated flow-through micro-/nanochannels. Applied Physics Letters, 98, (4), p041104.
  29. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, J. Martínez-Pastor. (2011). Birefringent porous silicon membranes for optical sensing. Opt. Express, 19, (27), p26106.
  30. J. Álvarez, P. Bettotti, N. Kumar, I. Suarez, D. Hill, J Martínez-Pastor. (2012). Highly-sensitive anisotropic porous silicon based optical sensors. Proc. SPIE, 8212, (1), p821209.
  31. J. Álvarez, L. Sola, G. Platt, M. Cretich, M. Swann, M. Chiari, D. Hill, and J. Martínez-Pastor. (2013). Realtime polarimetric biosensing using macroporous alumina membranes. Proc. SPIE 8765, Bio-MEMS and Medical Microdevices, p87650I.
  32. J. Álvarez, L. Sola, M. Cretich, M. J. Swann, K. B. Gylfason T. Volden, M. Chiari, D. Hill. (2014). Real time optical immunosensing with flow through porous alumina membranes. Journal of Sensors and Actuators B, 202, p834-p839.
  33. G. W. Platt, F. Damin, M. J. Swann, I. Metton, G. Skorski, M. Cretich, M. Chiari. (2014). Allergen immobilisation and signal amplification by quantum dots for use in a biosensor assay of IgE in serum. Biosensors and Bioelectronics, 52, p82-p88.
  34. M. Cretich, D. Breda, F. Damin, M. Borghi, L Sola, S.M. Unlu, & M. Chiari. (2010). Allergen microarrays on high sensitivity silicon slides. Analytical and bioanalytical chemistry, 398, (4), p1723-p1733.
  35. L. Sola, J. Álvarez, M. Cretich, M. J. Swann, T. Volden, M. Chiari, D. Hill. (2015). Characterisation of porous alumina membranes for efficient, real-time, flow through biosensing. J. Membrane Science, 276, p128- p135.
  36. J. Álvarez, C. Serrano, D. Hill, and J. Martínez-Pastor. (2013). Real-time polarimetric optical sensor using macroporous alumina membranes. Opt. Lett. 38, (7), p1058-p1060.
  37. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics In Quantum Electronics, 16, (3).
  38. K. B. Gylfason, (2010). Integrated Optical Slot-Waveguide Ring Resonator Sensor Arrays for Lab-on-Chip Applications. PhD Thesis TRITA-EE 2010:012, KTHRoyal institute of Technology, Stockholm.
Download


Paper Citation


in Harvard Style

Hill D. (2015). Nanophotonic Biosensors Within Lab on Chip Optical Systems . In Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS, ISBN 978-989-758-093-2, pages 60-68. DOI: 10.5220/0005259500600068


in Bibtex Style

@conference{photoptics15,
author={Daniel Hill},
title={Nanophotonic Biosensors Within Lab on Chip Optical Systems},
booktitle={Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,},
year={2015},
pages={60-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005259500600068},
isbn={978-989-758-093-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Photonics, Optics and Laser Technology - Volume 2: PHOTOPTICS,
TI - Nanophotonic Biosensors Within Lab on Chip Optical Systems
SN - 978-989-758-093-2
AU - Hill D.
PY - 2015
SP - 60
EP - 68
DO - 10.5220/0005259500600068