Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.,
and Szeliski, R. (2011). A Database and Evaluation
Methodology for Optical Flow. International Journal
on Computer Vision, 92(1):131.
B
´
er
´
eziat, D. and Herlin, I. (2011). Solving ill-posed image
processing problems using data assimilation. Numer-
ical Algorithms, 56(2):219–252.
Beyou, S., Cuzol, A., Gorthi, S. S., and M
´
emin, E. (2012).
Weighted ensemble transform Kalman filter for image
assimilation. Tellus A, 65.
Black, M. J. and Anandan, P. (1996). The robust estima-
tion of multiple motions: Parametric and piecewise-
smooth flow fields. Computer Vision and Image Un-
derstanding, 63(1):75 – 104.
Brankart, J.-M., Testut, C.-E., Brasseur, P., and Verron, J.
(2003). Implementation of a multivariate data assimi-
lation scheme for isopycnic coordinate ocean models:
Application to a 1993–1996 hindcast of the North At-
lantic Ocean circulation. Journal of Geophysical Re-
search: Oceans, 108.
Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004).
High accuracy optical flow estimation based on a the-
ory for warping. In Springer-Verlag, editor, Proceed-
ings of European Conference on Computer Vision,
volume 4, pages 25–36, Prague, Czech Republic.
Evensen, G. (2003). The ensemble Kalman filter: Theoret-
ical formulation and practical implementation. Ocean
Dynamics, 53:343–367.
Hamill, T. M., Whitaker, J. S., and Snyder, C. (2001).
Distance-dependent filtering of background error co-
variance estimates in an ensemble Kalman filter.
Monthly Weather Review, 129:2776–2790.
Haugen, V. E. J. and Evensen, G. (2002). Assimilation
of SLA and SST data into an OGCM for the Indian
Ocean. Ocean Dynamics, 52(3):133–151.
Horn, B. and Schunk, B. (1981). Determining optical flow.
Artificial Intelligence, 17:185–203.
Houtekamer, P. L. and Mitchell, H. L. (1998). Data as-
similation using an ensemble Kalman filter technique.
Monthly Weather Review, 128:796–811.
http://i21www.ira.uka.de/image sequences/ (1995).
Nibelungen-platz.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D):35–45.
Li, Y. and Osher, S. (2009). A new median formula with
applications to PDE based denoising. Communication
in Mathematical Sciences, 7(3):741–753.
Mac Aodha, O., Brostow, G., and Pollefeys, M.
(2010). Segmenting video into classes of algorithm-
suitability. In Proceedings of Conference on Com-
puter Vision and Pattern Recognition, pages 1054–
1061.
Oke, P. R., Sakov, P., and Corney, S. P. (2007). Impacts of
localisation in the EnKF and EnOI: experiments with
a small model. Ocean Dynamics, 57(1):32–45.
Papadakis, N., Corpetti, T., and M
´
emin, E. (2007). Dynam-
ically consistent optical flow estimation. In Proceed-
ings of International Conference on Computer Vision,
Rio de Janeiro, Brazil.
Sakov, P. and Oke, P. R. (2008). A deterministic formula-
tion of the ensemble Kalman filter: An alternative to
ensemble square root filters. Tellus.
Sun, D., Roth, S., and Black, M. (2010). Secrets of optical
flow estimation and their principles. In Proceedings
of European Conference on Computer Vision, pages
2432–2439.
Titaud, O., Vidard, A., Souopgui, I., and Le Dimet, F.-X.
(2010). Assimilation of image sequences in numerical
models. Tellus A, 62:30–47.
AnImage-basedEnsembleKalmanFilterforMotionEstimation
445