Table 3: The averages rank obtained by performing stereo matching using SG, GC and NL algorithms.
Algorithm 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit 1-bit
Semi-global matching 148.2 148.3 148.8 149.6 150.8 151.2 151.8 152
Graph cut 121.7 124 131.4 130.3 135.8 140.4 151.5 152
Non-local aggregation 45.4 43.2 65.5 89 117.2 137 149.3 151.9
stereo datasets are submitted to Middlebury stereo site
for performance evaluation. The results have demon-
strated the feasibility of our bit-plane slicing based
stereo matching framework.
ACKNOWLEDGEMENTS
The support of this work in part by the National Sci-
ence Council of Taiwan under Grant NSC-102-2221-
E-194-019 is gratefully acknowledged.
REFERENCES
Akhavan, T., Yoo, H., and Gelautz, M. (2013). A frame-
work for hdr stereo matching using multi-exposed im-
ages. In Proceedings of HDRi2013 - First Interna-
tional Conference and SME Workshop on HDR imag-
ing (2013).
Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Ad-
vances in computational stereo. IEEE Trans. Pattern
Anal. Mach. Intell., 25(8):993–1008.
Chen, Y.-S., Hung, Y.-P., and Fuh, C.-S. (2001). Fast
block matching algorithm based on the winner-update
strategy. IEEE Transactions on Image Processing,
10(8):1212 –1222.
Gong, M. and Yang, Y.-H. (2001). Multi-resolution stereo
matching using genetic algorithm. In SMBV ’01: Pro-
ceedings of the IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV’01), page 21.
Hirschmuller, H. (2008). Stereo processing by semiglobal
matching and mutual information. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
30(2):328–341.
Hirschmuller, H. and Scharstein, D. (2007). Evaluation of
cost functions for stereo matching. In Computer Vi-
sion and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8.
Humenberger, M., Zinner, C., Weber, M., Kubinger, W.,
and Vincze, M. (2010). A fast stereo matching algo-
rithm suitable for embedded real-time systems. Com-
puter Vision and Image Understanding, 114(11):1180
– 1202. Special issue on Embedded Vision.
Kolmogorov, V. and Zabin, R. (2004). What energy func-
tions can be minimized via graph cuts? Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
26(2):147–159.
Konolige, K. (1997). Small vision systems: hardware and
implementation. In Eighth International Symposium
on Robotics Research, page 111–116.
Lin, H.-Y. and Chou, X.-H. (2012). Stereo matching on low
intensity quantization images. In Pattern Recognition
(ICPR), 2012 21st International Conference on, pages
2618–2621.
Lin, H.-Y. and Lin, P.-Z. (2013). Hierarchical stereo match-
ing with image bit-plane slicing. Mach. Vision Appl.,
24(5):883–898.
Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2009).
Stream-centric stereo matching and view synthesis:
A high-speed approach on gpus. IEEE Transac-
tions on Circuits and Systems for Video Technology,
19(11):1598 –1611.
Min, D. and Sohn, K. (2008). Cost aggregation and oc-
clusion handling with wls in stereo matching. IEEE
Transactions on Image Processing, 17(8):1431 –1442.
Scharstein, D. and Szeliski, R. (2002a). Middlebury stereo
vision page. http://vision.middlebury.edu/stereo.
Scharstein, D. and Szeliski, R. (2002b). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. Int. J. Comput. Vision, 47(1-3):7–42.
Scharstein, D. and Szeliski, R. (2003). High-accuracy
stereo depth maps using structured light. In Com-
puter Vision and Pattern Recognition, 2003. Proceed-
ings. 2003 IEEE Computer Society Conference on,
volume 1, pages I–195–I–202 vol.1.
Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo
matching using belief propagation. IEEE Trans. Pat-
tern Anal. Mach. Intell., 25(7):787–800.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-
mogorov, V., Agarwala, A., Tappen, M., and Rother,
C. (2008). A comparative study of energy min-
imization methods for markov random fields with
smoothness-based priors. IEEE Trans. Pattern Anal.
Mach. Intell., 30(6):1068–1080.
Yang, Q. (2012). A non-local cost aggregation method
for stereo matching. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on,
pages 1402–1409.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
370