A Survey of Geodesic Paths on 3D Surfaces. Compu-
tational Geometry, 44(9):486–498.
Bronstein, A., Bronstein, M., Kimmel, R., Mahmoudi, M.,
and Sapiro, G. (2010). A Gromov-Hausdorff Frame-
work with Diffusion Geometry for Topologically-
Robust Non-rigid Shape Matching. International
Journal of Computer Vision, 89:266–286.
Chen, J. and Han, Y. (1990). Shortest Paths on a Polyhe-
dron. In Proc. 6th Annual Symposium on Computa-
tional Geometry, pages 360–369.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. (2001). Introduction to Algorithms. MIT Press and
McGraw-Hill, second edition.
Dijkstra, E. W. (1959). A Note on Two Problems in Con-
nection with Graphs. Numerische Mathematik, 1:269–
271.
Hamza, A. B. and Krim, H. (2003). Geodesic Object Rep-
resentation and Recognition. In Proc. International
Conference on Discrete Geometry for Computer Im-
agery, volume 2, pages 378–387.
Hershberger, J. and Suri, S. (1993). Efficient Computation
of Euclidean Shortest Paths in the Plane. In Proc. 34th
Annual Symposium on Foundations of Computer Sci-
ence, pages 508–517, Palo Alto, CA, USA.
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunit, T. L.
(2001). Topology Matching for Fully Automatic Sim-
ilarity Estimation of 3D Shapes. In Proc. Conference
on Computer Graphics (SIGGRAPH), pages 203–212.
Hwang, Y. K. and Ahuja, N. (1992). Gross Motion Plan-
ning: A Survey. ACM Computer Survey, 24(3):219–
291.
Kamousi, P., Lazard, S., Maheshwari, A., and Wuhrer, S.
(2013). Analysis of Farthest Point Sampling for Ap-
proximating Geodesics in a Graph. arXiv.org.
Kanai, T. and Suzuki, H. (2001). Approximate Shortest
Path on a Polyhedral Surface and its Applications.
Computer-Aided Design, 33(11):801–811.
Kapoor, S. (1999). Efficient Computation of Geodesic
Shortest Paths. In Proc. 31st Annual ACM Symposium
on Theory of Computing, pages 770–779, Atlanta-GA,
USA.
Kimmel, R. and Sethian, J. A. (1998). Computing Geodesic
Paths on Manifolds. Proc. National Academy of Sci-
ences of the United States of America, 95(15):8431–
8435.
Li, Z., Jin, Y., Jin, X., and Ma, L. (2012). Approximate
Straightest Path Computation and its Application in
Parameterization. The Visual Computer, 28(1):63–74.
Lozano-Prez, T. and Wesley, M. A. (1979). An Algorithm
for Planning Collision-Free Paths among Polyhedral
Obstacles. Communications of the ACM, 22(10):560–
570.
Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H.
(1987). The Discrete Geodesic Problem. SIAM Jour-
nal on Computing, 16(4):647–668.
Mount, D. (1985). On Finding Shortest Paths in Con-
vex Polyhedra. Technical Report 1495, University of
Maryland, Baltimore, USA.
Mount, D. (1986). Storing the Subdivision of a Polyhedral
Surface. In Second Annual Symposium on Computa-
tional Geometry, pages 150–158.
Novotni, M. and Klein, R. (2002). Computing Geodesic
Distances on Triangular Meshes. In Proc. 10th Inter-
national Conference in Central Europe on Computer
Graphics, pages 341–347.
Onclinx, V., Lee, J., Wertz, V., and Verleysen, M. (2010).
Dimensionality Reduction by Rank Preservation. In
International Joint Conference on Neural Networks,
pages 1 –8.
O’Rourke, J., Suri, S., and Booth, H. (1985). Shortest Paths
on Polyhedral Surfaces. In Proc. 2nd Symposium of
Theoretical Aspects of Computer Science, pages 243–
254.
Papadimitriou, C. H. (1985). An Algorithm for Shortest-
Path Motion in Three Dimensions. Information Pro-
cessing Letters, 20:259–263.
Peyr´e, G., P´echaud, M., Keriven, R., and Cohen, L. D.
(2010). Geodesic Methods in Computer Vision and
Graphics. Foundations and Trends in Computer
Graphics and Vision, 5:197–397.
Rabin, J., Peyr´e, G., and Cohen, L. D. (2010). Geodesic
Shape Retrieval via Optimal Mass Transport. In Pro-
ceedings of the 11th European conference on Com-
puter Vision: Part V, pages 771–784, Heraklion,
Crete, Greece. Springer-Verlag.
Sharir, M. and Schorr, A. (1986). On Shortest Paths in
Polyhedral Spaces. SIAM Journal on Computing,
15(1):193–215.
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J.,
and Hoppe, H. (2005). Fast Exact and Approximate
Geodesics on Meshes. ACM Transactions on Graph-
ics, 24(3):553–560.
Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000).
A Global Geometric Framework for Nonlinear Di-
mensionality Reduction. Science, 290:2319–2323.
Varadarajan, K. R. and Agarwal, P. K. (2000). Approximat-
ing Shortest Paths on a Nonconvex Polyhedron. SIAM
Journal on Computing, 30(4):1321–1340.
Wang, K., Lavoue, G., Denis, F., and Baskurt, A. (2008). A
Comprehensive Survey on Three-Dimensional Mesh
Watermarking. IEEE Transactions on Multimedia,
10(8):1513–1527.
Ying, X., Wang, X., and He, Y. (2013). Saddle Ver-
tex Graph (SVG): A Novel Solution to the Discrete
Geodesic Problem. ACM Transactions on Graphics,
32(6):170:1–170:12.
Zigelman, G., Kimmel, R., and Kiryati, N. (2002). Tex-
ture Mapping Using Surface Flattening via Multidi-
mensional Scaling. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8(2):198–207.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
378