used in this paper are square boxes with fixed size.
However, salient areas usually are in irregular shapes.
A method to detect regions in their own shapes might
improve the short term tracking performance. In addi-
tion, salient parts outside the human body area could
also be considered to help the tracking of people.
REFERENCES
Andriluka, M., Roth, S., and Schiele, B. (2008).
People-tracking-by-detection and people-detection-
by-tracking. In Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE.
Andriyenko, A. and Schindler, K. (2011). Multi-target
tracking by continuous energy minimization. In Com-
puter Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1265–1272. IEEE.
Benfold, B. and Reid, I. (2011). Stable multi-target tracking
in real-time surveillance video. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 3457–3464. IEEE.
Berclaz, J., Fleuret, F., Turetken, E., and Fua, P. (2011).
Multiple object tracking using k-shortest paths opti-
mization. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(9):1806–1819.
Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier,
E., and Van Gool, L. (2011). Online multiper-
son tracking-by-detection from a single, uncalibrated
camera. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 33(9):1820–1833.
Checka, N., Wilson, K., Rangarajan, V., and Darrell, T.
(2003). A probabilistic framework for multi-modal
multi-person tracking. In Computer Vision and Pat-
tern Recognition Workshop, 2003. CVPRW’03. Con-
ference on, volume 9, pages 100–100. IEEE.
Cheng, M.-M., Zhang, G.-X., Mitra, N. J., Huang, X., and
Hu, S.-M. (2011). Global contrast based salient region
detection. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 409–
416. IEEE.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886–
893. IEEE.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discrim-
inatively trained part-based models. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
32(9):1627–1645.
Ferryman, J. and Shahrokni, A. (2009). Pets2009: Dataset
and challenge. In Winter-PETS.
Fleuret, F., Berclaz, J., Lengagne, R., and Fua, P. (2008).
Multicamera people tracking with a probabilistic oc-
cupancy map. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 30(2):267–282.
Ge, W. and Collins, R. T. (2008). Multi-target data associa-
tion by tracklets with unsupervised parameter estima-
tion. In BMVC, volume 2, page 5.
Grabner, H., Matas, J., Van Gool, L., and Cattin, P. (2010).
Tracking the invisible: Learning where the object
might be. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 1285–
1292. IEEE.
Iodice, S. and Petrosino, A. (2013). Person re-identification
based on enriched symmetry salient features and
graph matching. In Pattern Recognition, pages 155–
164. Springer.
Itti, L., Koch, C., and Niebur, E. (1998). A model of
saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on pattern analysis and ma-
chine intelligence, 20(11):1254–1259.
Izadinia, H., Saleemi, I., Li, W., and Shah, M. (2012). 2t:
Multiple people multiple parts tracker. In Computer
Vision–ECCV 2012, pages 100–114. Springer.
Jiang, H., Fels, S., and Little, J. J. (2007). A linear
programming approach for multiple object tracking.
In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–8. IEEE.
Kalal, Z., Mikolajczyk, K., and Matas, J. (2010). Forward-
backward error: Automatic detection of tracking fail-
ures. In Pattern Recognition (ICPR), 2010 20th Inter-
national Conference on, pages 2756–2759. IEEE.
Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V.,
Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V.,
and Zhang, J. (2009). Framework for performance
evaluation of face, text, and vehicle detection and
tracking in video: Data, metrics, and protocol. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 31(2):319–336.
Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97.
Kuo, C.-H., Huang, C., and Nevatia, R. (2010). Multi-target
tracking by on-line learned discriminative appearance
models. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 685–692.
IEEE.
Leal-Taix
´
e, L., Pons-Moll, G., and Rosenhahn, B. (2011).
Everybody needs somebody: Modeling social and
grouping behavior on a linear programming multiple
people tracker. In Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on,
pages 120–127. IEEE.
Li, Y., Hou, X., Koch, C., Rehg, J., and Yuille, A. (2014).
The secrets of salient object segmentation. CVPR.
Milan, A., Roth, S., and Schindler, K. (2014). Continuous
energy minimization for multi-target tracking.
Milan, A., Schindler, K., and Roth, S. (2013). Detection-
and trajectory-level exclusion in multiple object track-
ing. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 3682–
3689. IEEE.
Oh, S., Russell, S., and Sastry, S. (2004). Markov chain
monte carlo data association for general multiple-
target tracking problems. In Decision and Control,
SalientPartsbasedMulti-peopleTracking
239