F71J11000690002). Davide Maiorca gratefully ac-
knowledges Sardinia Regional Government for the fi-
nancial support of his PhD F.S.E. Operational Pro-
gramme of the Autonomous Region of Sardinia, Eu-
ropean Social Fund 2007-2013 - Axis IV Human Re-
sources, Objective l.3, Line of Activity l.3.1.).
REFERENCES
Adobe (2006). PDF Reference. Adobe Portable Document
Format Version 1.7. Adobe.
Adobe (2008). Adobe Supplement to ISO 32000. Adobe.
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and
Nielsen, H. (2000). Assessing the accuracy of predic-
tion algorithms for classification: an overview. Bioin-
formatics, 16(5):412–424.
Bania, P. (2010). Jit spraying and mitigations. CoRR,
abs/1009.1038.
Biggio, B., Corona, I., Maiorca, D., Nelson, B., Srndic, N.,
Laskov, P., Giacinto, G., and Roli, F. (2013a). Evasion
attacks against machine learning at test time. In M.
Learning and Know. Discovery in Databases - Europ.
Conf., ECML PKDD, pages 387–402.
Biggio, B., Corona, I., Nelson, B., Rubinstein, B., Maiorca,
D., Fumera, G., Giacinto, G., and Roli, F. (2014a).
Security evaluation of support vector machines in ad-
versarial environments. In Ma, Y. and Guo, G., ed-
itors, Support Vector Machines Applications, pages
105–153. Springer International Publishing.
Biggio, B., Fumera, G., and Roli, F. (2010). Multiple classi-
fier systems for robust classifier design in adversarial
environments. Int’l J. Mach. Learn. and Cybernetics,
1(1):27–41.
Biggio, B., Fumera, G., and Roli, F. (2014b). Security
evaluation of pattern classifiers under attack. IEEE
Transactions on Knowledge and Data Engineering,
26(4):984–996.
Biggio, B., Nelson, B., and Laskov, P. (2012). Poisoning at-
tacks against support vector machines. In Langford, J.
and Pineau, J., editors, 29th Int’l Conf. on M. Learn-
ing (ICML). Omnipress, Omnipress.
Biggio, B., Pillai, I., Bul
`
o, S. R., Ariu, D., Pelillo, M., and
Roli, F. (2013b). Is data clustering in adversarial set-
tings secure? In Proceedings of the 2013 ACM Work-
shop on Artificial Intelligence and Security, AISec
’13, pages 87–98, New York, NY, USA. ACM.
Biggio, B., Rieck, K., Ariu, D., Wressnegger, C., Corona,
I., Giacinto, G., and Roli, F. (2014c). Poisoning be-
havioral malware clustering. In Proc. 2014 Workshop
on Artificial Intelligent and Security Workshop, AISec
’14, pages 27–36, New York, NY, USA. ACM.
Buchanan, E., Roemer, R., Sevage, S., and Shacham, H.
(2008). Return-oriented programming: Exploitation
without code injection. In Black Hat ’08.
Canali, D., Cova, M., Vigna, G., and Kruegel, C. (2011).
Prophiler: a fast filter for the large-scale detection of
malicious web pages. In Proc. of the 20th Int. Conf.
on World Wide Web.
Corona, I., Maiorca, D., Ariu, D., and Giacinto, G.
(2014). Lux0r: Detection of malicious pdf-embedded
javascript code through discriminant analysis of api
references. In To appear in the Proc. of the 7th ACM
Workshop on Art. Intelligence and Security.
Cova, M., Kruegel, C., and Vigna, G. (2010). Detection
and analysis of drive-by-download attacks and mali-
cious javascript code. In Proc. of the 19th Int. Conf.
on World Wide Web.
Curtsinger, C., Livshits, B., Zorn, B., and Seifert, C. (2011).
Zozzle: fast and precise in-browser javascript mal-
ware detection. In Proc. of the 20th USENIX Conf.
on Security.
Engleberth, M., Willems, C., and Holz, T. (2009). Detect-
ing malicious documents with combined static and dy-
namic analysis. In Virus Bulletin.
Esparza, J. M. (2011). Obfuscation and (non-)detection of
malicious pdf files. In S21Sec e-crime.
Freund, Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application
to boosting.
Laskov, P. and
ˇ
Srndi
´
c, N. (2011). Static detection of ma-
licious javascript-bearing pdf documents. In Proc.
of the 27th Annual Computer Security Applications
Conf.
Li, W.-J., Stolfo, S., Stavrou, A., Androulaki, E., and
Keromytis, A. D. (2007). A study of malcode-bearing
documents. In Proc. of the 4th Int. Conf. on Detect. of
Intrus. and Malware, and Vulnerability Assessment.
Liu, D., Wang, H., and Stavrou, A. (2014). Detecting ma-
licious javascript in pdf through document instrumen-
tation. In Proc. of the 44th Annual Int. Conf. on De-
pendable Systems and Networks.
Maass, M., Scherlis, W. L., and Aldrich, J. (2014). In-
nimbo sandboxing. In Proc. of the 2014 Symp. and
Bootcamp on the Science of Security, HotSoS ’14,
pages 1:1–1:12, New York, NY, USA. ACM.
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Cam, L.
M. L. and Neyman, J., editors, Proc. of the fifth Berke-
ley Symp. on Mathematical Statistics and Probabil-
ity, volume 1, pages 281–297. University of California
Press.
Maiorca, D., Corona, I., and Giacinto, G. (2013). Looking
at the bag is not enough to find the bomb: An evasion
of structural methods for malicious pdf files detection.
In Proc. of the 8th ACM SIGSAC Symp. on Informa-
tion, Computer and Communications Security.
Maiorca, D., Giacinto, G., and Corona, I. (2012). A pattern
recognition system for malicious pdf files detection.
In Proc. of the 8th Int. Conf. on M. Learning and Data
Mining in Pattern Recognition.
Quinlan, J. R. (1996). Learning decision tree classifiers.
ACM Comput. Surv., 28(1):71–72.
Ratanaworabhan, P., Livshits, B., and Zorn, B. (2009). Noz-
zle: a defense against heap-spraying code injection at-
tacks. In Proc. of the 18th conf. on USENIX security
symp.
Rieck, K., Holz, T., Willems, C., D
¨
ussel, P., and Laskov, P.
(2008). Learning and classification of malware behav-
AStructuralandContent-basedApproachforaPreciseandRobustDetectionofMaliciousPDFFiles
35