tion of a global energy function. A MCMC frame-
work allows to robustly compute a solution that ex-
plains the measured data. RANSAC turns out to be
very efficient for computing new proposals that are
likely to minimize the energy function. In future re-
search, the algorithm will be extended by more ad-
vanced models, such as b-spline patches or quadrics
surfaces.
REFERENCES
Attene, M., Falcidieno, B., and Spagnuolo, M. (2006). Hi-
erarchical mesh segmentation based on fitting primi-
tives. The Visual Computer, 22:181–193.
Benhabiles, H., Lavou
´
e, G., Vandeborre, J.-P., and Daoudi,
M. (2011). Learning boundary edges for 3d-mesh seg-
mentation. In Computer Graphics Forum, volume 30,
pages 2170–2182. Wiley Online Library.
Cohen-Steiner, D., Alliez, P., and Desbrun, M. (2004). Vari-
ational shape approximation. In ACM Transactions on
Graphics, volume 23, pages 905–914. ACM.
Delong, A., Osokin, A., Isack, H., and Boykov, Y. (2010).
Fast approximate energy minimization with label
costs. In 2010 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2173–2180.
Ebert, D. S. (2003). Texturing & modeling: a procedural
approach. Morgan Kaufmann.
Han, F., Tu, Z., and Zhu, S.-C. (2004). Range image
segmentation by an effective jump-diffusion method.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1138–1153.
Isack, H. and Boykov, Y. (2012). Energy-based geomet-
ric multi-model fitting. International Jorunal of Com-
puter Vision, 97(2):123–147.
Jancosek, M. and Pajdla, T. (2011). Multi-view recon-
struction preserving weakly-supported surfaces. In
2011 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3121–3128. IEEE.
Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).
Learning 3d mesh segmentation and labeling. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages
102:1–102:12, New York, NY, USA. ACM.
Lafarge, F., Keriven, R., Br
´
edif, M., and Vu, H.-H. (2013).
A hybrid multiview stereo algorithm for modeling ur-
ban scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(1):5–17.
Lai, Y.-K., Hu, S.-M., Martin, R. R., and Rosin, P. L. (2008).
Fast mesh segmentation using random walks. In Pro-
ceedings of the 2008 ACM symposium on Solid and
physical modeling, pages 183–191. ACM.
Lavou
´
e, G. and Wolf, C. (2008). Markov random fields
for improving 3d mesh analysis and segmentation. In
3DOR, pages 25–32.
Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D.,
and Mitra, N. J. (2011). Globfit: Consistently fitting
primitives by discovering global relations. In ACM
Transactions on Graphics (TOG), volume 30, page 52.
ACM.
Longjiang, E., Waseem, S., and Willis, A. (2013). Using
a map-mrf model to improve 3d mesh segmentation
algorithms. In Southeastcon, 2013 Proceedings of
IEEE, pages 1–7. IEEE.
Lv, J., Chen, X., Huang, J., and Bao, H. (2012). Semi-
supervised mesh segmentation and labeling. In Com-
puter Graphics Forum, volume 31, pages 2241–2248.
Wiley Online Library.
Mangan, A. P. and Whitaker, R. T. (1999). Partitioning 3d
surface meshes using watershed segmentation. IEEE
Transactions on Visualization and Computer Graph-
ics, 5(4):308–321.
Papazov, C. and Burschka, D. (2011). An efficient
ransac for 3d object recognition in noisy and occluded
scenes. In Kimmel, R., Klette, R., and Sugimoto, A.,
editors, Computer Vision ACCV 2010, volume 6492
of Lecture Notes in Computer Science, pages 135–
148. Springer Berlin Heidelberg.
Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient
ransac for point-cloud shape detection. Computer
Graphics Forum, 26(2):214–226.
Suzuki, M. (1993). Quantum Monte Carlo methods in con-
densed matter physics. World scientific.
Tu, Z. and Zhu, S.-C. (2002). Image segmentation by data-
driven markov chain monte carlo. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
24(5):657–673.
V
´
arady, T., Facello, M. A., and Ter
´
ek, Z. (2007). Automatic
extraction of surface structures in digital shape recon-
struction. Computer Aided Design, 39(5):379–388.
Woodford, O. J., Pham, M.-T., Maki, A., Gherardi, R., Per-
bet, F., and Stenger, B. (2012). Contraction moves for
geometric model fitting. In Proceedings of the 12th
European Conference on Computer Vision - Volume
Part VII, ECCV’12, pages 181–194, Berlin, Heidel-
berg. Springer-Verlag.
Wu Leif Kobbelt, J. (2005). Structure recovery via hy-
brid variational surface approximation. In Computer
Graphics Forum, volume 24, pages 277–284. Wiley
Online Library.
Yan, D.-M., Wang, W., Liu, Y., and Yang, Z. (2012). Vari-
ational mesh segmentation via quadric surface fitting.
Computer-Aided Design, 44(11):1072–1082.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
250