Figure 10: Limitations of our approach. (a) A sheet-like
plier model from SHREC’11(Lian et al., 2011) which is
hard to be segmented. (b) A bust model with lots of details.
(c) A bear model segmented with coarse boundaries.
5 CONCLUSION
In this paper, we introduced an efficient and effective
automatic mesh segmentation method based on the
detection of concave areas and heuristic 2-category
classification via fast marching. We demonstrated
the effectiveness of our method by carrying out seg-
mentation experiments on the Princeton segmentation
benchmark. Experimental results indicate that our
method clearly outperforms existing state-of-the-art
approaches in mesh segmentation.
ACKNOWLEDGEMENT
This work was supported by National Natural Sci-
ence Foundation of China (Grant No.: 61202230 and
61472015), National Hi-Tech Research and Develop-
ment Program (863 Program) of China (Grant No.:
2014AA015102).
REFERENCES
Bilmes, J. A. (1997). A gentle tutorial on the em algorithm
and its application to parameter estimation for gaus-
sian mixture and hidden markov models.
Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast ap-
proximate energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 23(11):1222–1239.
Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). A
benchmark for 3D mesh segmentation. ACM Trans-
actions on Graphics, 28(3):Article No. 73.
Golovinskiy, A. and Funkhouser, T. (2008). Randomized
cuts for 3D mesh analysis. ACM Transactions on
Graphics, 27(5).
Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).
Learning 3D mesh segmentation and labeling. ACM
Transactions on Graphics, 29(3):1–11.
Katz, S., Leifman, G., and Tal, A. (2003). Hierarchical
mesh decomposition using fuzzy clustering and cuts.
ACM Trans. Graphics, 22:954–961.
Katz, S., Leifman, G., and Tal, A. (2005). Mesh segmen-
tation using feature point and core extraction. The Vi-
sual Computer, 21(8):649–658.
Lai, Y., Hu, S., Martin, R. R., and Rosin, P. L. (2008). Fast
mesh segmentation using random walks. In Proceed-
ings of ACM symposium on Solid and Physical Mod-
eling, pages 183–191.
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J.,
Kawamura, S., Kurita, Y., Lavou, G., Nguyen, H.,
Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter,
M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., and
Vandermeulen, D. (2011). Shrec11 track: Shape re-
trieval on non-rigid 3d watertight meshes. Eurograph-
ics Workshop on 3D Object Retrieval.
Lin, J., Yang, Y., Lu, T., He, G., and Ruan, J. (2010). Mesh
segmentation by local depth. 2010 Second Interna-
tional Conference on Computer Modeling and Simu-
lation.
Liu, R. and Zhang, H. (2007). Mesh segmentation via
spectral embedding and contour analysis. In Com-
puter Graphics Forum (Special Issue of Eurographics
2007). Blackwell Publishing.
Sethian, J. (1999). Level Set Methods and Fast Marching
Methods Evolving Interfaces in Computational Geom-
etry, Fluid Mechanics, Computer Vision, and Materi-
als Science. Cambridge University Press, London, 1st
edition.
Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and
Zhang, H. (2010). Contextual part analogies in 3d ob-
jects. International Journal of Computer Vision, pages
309–326.
Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Con-
sistent mesh partitioning and skeletonisation using
the shape diameter function. The Visual Computer,
24(4):249–259.
Shlafman, S., Tal, A., and Katz, S. (2002). Metamorpho-
sis of polyhedral surfaces using decomposition. Com-
puter Graphics Forum, 21(3):219–228.
Zhang, H. and Liu, R. (2005). Mesh segmentation via re-
cursive and visually salient spectral cuts. In Proc. of
Vision, Modeling, and Visualization. VMV.
CEFM-AHeuristicMeshSegmentationMethodbasedonConvexityEstimationandFastMarching
121