Robust Head-shoulder Detection using Deformable Part-based Models

Enes Dayangac, Christian Wiede, Julia Richter, Gangolf Hirtz

2015

Abstract

Conventional person detection algorithms lack of robustness, especially when the person is partially occluded. We propose thereby a robust head-shoulder detector in 2-D images using deformable part-based models. This detector can be used in a variety of applications such as people counting and person dwell time measurements. In experiments, we compare the head-shoulder detector with the full body detector quantitatively and analyze the robustness of the detector in realistic scenarios. In the results, we show that the model learned with our method outperforms other methods proposed in related work on an ambient assisted living application.

References

  1. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886- 893 vol. 1.
  2. Dollár, P. (2013). Piotr's Image and Video Matlab Toolbox (PMT). http://vision.ucsd.edu/ pdollar/toolbox/doc/ index.html.
  3. Dollár, P., Belongie, S., and Perona, P. (2010). The fastest pedestrian detector in the west. In BMVC.
  4. Dollár, P., Tu, Z., Perona, P., and Belongie, S. (2009a). Integral channel features. In BMVC.
  5. Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2009b). Pedestrian detection: A benchmark. In CVPR.
  6. Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. PAMI, 34.
  7. Enzweiler, M. and Gavrila, D. (2009). Monocular pedestrian detection: Survey and experiments. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2179-2195.
  8. Ess, A., Leibe, B., and Van Gool, L. (2007). Depth and appearance for mobile scene analysis. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1-8.
  9. Everingham, M., Van Gool, L., Williams, C., Winn, J., and Zisserman, A. (2010). Pascal. International Journal of Computer Vision, 88(2).
  10. Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. (2010). Object detection with discriminatively trained part-based models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(9):1627-1645.
  11. Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8.
  12. Gavrila, D. (2007). A bayesian, exemplar-based approach to hierarchical shape matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(8):1408-1421.
  13. Girshick, R. B., Felzenszwalb, P. F., and McAllester, D. (2012). Discriminatively trained deformable part models, release 5. http://people.cs.uchicago.edu/ rbg/latent-release5/.
  14. Kirchner, N., Alempijevic, A., and Virgona, A. (2012). Head-to-shoulder signature for person recognition. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1226-1231.
  15. Li, M., Zhang, Z., Huang, K., and Tan, T. (2009). Rapid and robust human detection and tracking based on omegashape features. In Image Processing (ICIP), 2009 16th IEEE International Conference on, pages 2545-2548.
  16. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60:91-110.
  17. Papageorgiou, C. and Poggio, T. (2000). A trainable system for object detection. International Journal of Computer Vision, 38(1):15-33.
  18. Park, D., Ramanan, D., and Fowlkes, C. (2010). Multiresolution models for object detection. In Computer Vision ECCV 2010, volume 6314 of Lecture Notes in Computer Science, pages 241-254.
  19. Richter, J., Findeisen, M., and Hirtz, G. (2014). Assessment and Care System Based on People Detection for Elderly Suffering From Dementia. In Consumer Electronics Berlin (ICCE-Berlin), 2014. ICCEBerlin 2014. IEEE Fourth International Conference on Consumer Electronics, pages 59-63. IEEE.
  20. Sabzmeydani, P. and Mori, G. (2007). Detecting pedestrians by learning shapelet features. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
  21. Shashua, A., Gdalyahu, Y., and Hayun, G. (2004). Pedestrian detection for driving assistance systems: singleframe classification and system level performance. In Intelligent Vehicles Symposium, 2004 IEEE, pages 1- 6.
  22. Tu, J., Zhang, C., and Hao, P. (2013). Robust real-time attention-based head-shoulder detection for video surveillance. In Image Processing (ICIP), 2013 20th IEEE International Conference on, pages 3340-3344.
  23. Viola, P. and Jones, M. (2001). Robust real-time object detection. In International Journal of Computer Vision.
  24. Viola, P., Jones, M., and Snow, D. (2003). Detecting pedestrians using patterns of motion and appearance. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 734-741 vol.2.
  25. Walk, S., Majer, N., Schindler, K., and Schiele, B. (2010). New features and insights for pedestrian detection. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1030-1037.
  26. Wang, S., Zhang, J., and Miao, Z. (2013). A new edge feature for head-shoulder detection. In Image Processing (ICIP), 2013 20th IEEE International Conference on, pages 2822-2826.
  27. Wojek, C. and Schiele, B. (2008). A performance evaluation of single and multi-feature people detection. In Pattern Recognition, volume 5096 of Lecture Notes in Computer Science, pages 82-91.
  28. Wojek, C., Walk, S., and Schiele, B. (2009). Multi-cue onboard pedestrian detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 794-801.
  29. Wu, B. and Nevatia, R. (2005). Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 90-97 Vol. 1.
  30. Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S. (2006). Fast human detection using a cascade of histograms of oriented gradients. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1491-1498.
  31. Zouba, N., Bremond, F., Thonnat, M., and Vu, V. T. (2007). Multi-sensors analysis for everyday activity monitoring. Proc. of SETIT, pages 25-29.
Download


Paper Citation


in Harvard Style

Dayangac E., Wiede C., Richter J. and Hirtz G. (2015). Robust Head-shoulder Detection using Deformable Part-based Models . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 236-243. DOI: 10.5220/0005266002360243


in Bibtex Style

@conference{visapp15,
author={Enes Dayangac and Christian Wiede and Julia Richter and Gangolf Hirtz},
title={Robust Head-shoulder Detection using Deformable Part-based Models},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={236-243},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005266002360243},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Robust Head-shoulder Detection using Deformable Part-based Models
SN - 978-989-758-090-1
AU - Dayangac E.
AU - Wiede C.
AU - Richter J.
AU - Hirtz G.
PY - 2015
SP - 236
EP - 243
DO - 10.5220/0005266002360243