An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos
Caroline Silva, Thierry Bouwmans, Carl Frélicot
2015
Abstract
In this paper, we propose an eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) descriptor for background modeling and subtraction in videos. By combining the strengths of the original LBP and the similar CS ones, it appears to be robust to illumination changes and noise, and produces short histograms, too. The experiments conducted on both synthetic and real videos (from the Background Models Challenge) of outdoor urban scenes under various conditions show that the proposed XCS-LBP outperforms its direct competitors for the background subtraction task.
References
- Bilodeau, G.-A., Jodoin, J.-P., and Saunier, N. (2013). Change detection in feature space using local binary similarity patterns. In Int. Conf. on Computer and Robot Vision, pages 106-112.
- Bouwmans, T. (2014). Traditional and recent approaches in background modeling for foreground detection: An overview. In Computer Science Review, pages 31-66.
- Heikkilä, M. and Pietikäinen, M. (2006). A texture-based method for modeling the background and detecting moving objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28:657-662.
- Heikkilä, M., Pietikäinen, M., and Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42:425-436.
- Lee, Y., Jung, J., and Kweon, I.-S. (2011). Hierarchical online boosting based background subtraction. In KoreaJapan Joint Workshop on Frontiers of Computer Vision (FCV), pages 1-5.
- Liao, S., Zhao, G., Kellokumpu, V., Pietikainen, M., and Li, S. (2010). Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In IEEE Int. Conf. on Computer Vision and Pattern Recognition, pages 1301-1306.
- Noh, S. and Jeon, M. (2012). A new framework for background subtraction using multiple cues. In Asian Conf. on Computer Vision, LNCS 7726, pages 493-506. Springer.
- Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, pages 971-987.
- Pietikäinen, M., Hadid, A., Zhao, G., and Ahonen, T. (2011). Computer vision using local binary patterns, volume 40 of Computational Imaging and Vision. Springer-Verlag.
- Richards, J. and Jia, X. (2014). Local binary patterns: New variants and applications, volume 506 of Studies in Computational Intelligence. Springer-Verlag.
- Shah, M., Deng, J., and Woodford, B. (2013). Video background modeling: Recent approaches, issues and our solutions. In Machine Vision and Applications, pages 1-15.
- Shimada, A. and Taniguchi, R.-I. (2009). Hybrid background model using spatial-temporal lbp. In IEEE Int. Conf. on Advanced Video and Signal Based Surveillance, pages 19-24.
- Sobral, A. and Vacavant, A. (2014). A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding, 122:4-21.
- Vacavant, A., Chateau, T., Wilhelm, A., and Lequievre, L. (2012). A benchmark dataset for outdoor foreground/background extraction. In Asian Conf. on Computer Vision, pages 291-300.
- Vishnyakov, B., Gorbatsevich, V., Sidyakin, S., Vizilter, Y., Malin, I., and Egorov, A. (2014). Fast moving objects detection using ilbp background model. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3:347-350.
- Wang, L. and Pan, C. (2010). Fast and effective background subtraction based on eLBP. In IEEE Int. Conf.
- on Acoustics, Speech, and Signal Processing, pages 1394-1397.
- Wang, L., Wu, H.-Y., and Pan, C. (2010). Adaptive eLBP for background subtraction. In Kimmel, R., Klette, R., and Sugimoto, A., editors, Asian Conf. on Computer Vision, LNCS 6494, pages 560-571. Springer.
- Wu, H., Liu, N., Luo, X., Su, J., and Chen, L. (2014). Realtime background subtraction-based video surveillance of people by integrating local texture patterns. Signal, Image and Video Processing, 8(4):665-676.
- Xue, G., Song, L., Sun, J., and Wu, M. (2011). Hybrid center-symmetric local pattern for dynamic background subtraction. In IEEE Int. Conf. on Multimedia and Expo, pages 1-6.
- Xue, G., Sun, J., and Song, L. (2010). Dynamic background subtraction based on spatial extended centersymmetric local binary pattern. In IEEE Int. Conf. on Multimedia and Expo, pages 1050-1054.
- Yin, H., Yang, H., Su, H., and Zhang, C. (2013). Dynamic background subtraction based on appearance and motion pattern. In IEEE Int. Conf. on Multimedia and Expo Workshop, pages 1-6.
- Yuan, G.-W., Gao, Y., Xu, D., and Jiang, M.-R. (2012). A new background subtraction method using texture and color information. In Advanced Intelligent Computing Theories and Applications, LNAI 6839, pages 541- 548. Springer.
- Zhou, W., Liu, Y., Zhang, W., Zhuang, L., and Yu, N. (2011). Dynamic background subtraction using spatial-color binary patterns. In Int. Conf. on Graphic and Image Processing, pages 314-319. IEEE Computer Society.
Paper Citation
in Harvard Style
Silva C., Bouwmans T. and Frélicot C. (2015). An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 395-402. DOI: 10.5220/0005266303950402
in Bibtex Style
@conference{visapp15,
author={Caroline Silva and Thierry Bouwmans and Carl Frélicot},
title={An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={395-402},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005266303950402},
isbn={978-989-758-089-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos
SN - 978-989-758-089-5
AU - Silva C.
AU - Bouwmans T.
AU - Frélicot C.
PY - 2015
SP - 395
EP - 402
DO - 10.5220/0005266303950402