ACKNOWLEDGEMENTS
The authors wish to thank Fisheries and Oceans
Canada for making available the data used in the
case study. This work was supported by a Strategic
Projects Grant from the Natural Sciences and Engi-
neering Research Council of Canada held by the first
author.
REFERENCES
Andrienko, G., Andrienko, N., and Heurich, M. (2011).
An event-based conceptual model for context-aware
movement analysis. International Journal of Geo-
graphical Information Science, 25(9):1347–1370.
Andrienko, G., Andrienko, N., Jankowski, P., Keim,
D., Kraak, M.-J., MacEachren, A., and Wrobel, S.
(2007a). Geovisual analytics for spatial decision sup-
port: Setting the research agenda. International Jour-
nal of Geographical Information Science, 21(8):839–
857.
Andrienko, G., Andrienko, N., and Wrobel, S. (2007b). Vi-
sual analytics tools for analysis of movement data.
ACM SIGKDD Explorations Newsletter, 9(2):38–46.
Andrienko, N., Andrienko, G., and Gatalsky, P. (2000).
Supporting visual exploration of object movement. In
Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 217–220,315.
Andrienko, N., Andrienko, G., Stange, H., Liebig, T., and
Hecker, D. (2012). Visual analytics for understand-
ing spatial situations from episodic movement data.
K
¨
unstliche Intelligenz, 26(3):241–251.
Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13(3):319–340.
Dykes, J. A. and Mountain, D. M. (2003). Seeking structure
in records of spatio-temporal behaviour: Visualization
issues, efforts and applications. Computational Statis-
tics & Data Analysis, 43(4):581–603.
Enguehard, R. A., Hoeber, O., and Devillers, R. (2013). In-
teractive exploration of movement data: A case study
of geovisual analytics for fishing vessel analysis. In-
formation Visualization, 12(1):65–84.
Hering, E. (1964). Outlines of a Theory of Light Sense.
Harvard University Press, Cambridge, MA, USA.
Hoeber, O., Wilson, G., Harding, S., Enguehard, R., and
Devillers, R. (2011). Exploring geo-temporal differ-
ences using GTdiff. In Proceedings of the Pacific Vi-
sualization Symposium, pages 139–146.
J
¨
anicke, S., Heine, C., Stockmann, R., and Scheuermann,
G. (2012). Comparative visualization of geospatial-
temporal data. In Proceedings of the International
Conference on Information Visualization Theory and
Applications, pages 613–625.
Johansson, S. and Jern, M. (2007). GeoAnalytics visual
inquiry and filtering tools in parallel coordinates plots.
In Proceedings of ACM International Symposium on
Geographic Information Systems, pages 33:1–33:8.
Kapler, T. and Wright, W. (2005). Geotime information vi-
sualization. Information Visualization, 4(2):136–146.
Keim, D., Andrienko, G., Fekete, J.-D., G
¨
org, C., Kohlham-
mer, J., and Melanc¸on, G. (2008). Visual analytics:
Definition, process, and challenges. In Kerren, A.,
Stasko, J. T., Fekete, J.-D., and North, C., editors, In-
formation Visualization: Human-Centered Issues and
Perspectives, pages 154–175. Springer-Verlag, Berlin,
Heidelberg.
Koffka, K. (1935). Principles of Gestalt Psychology. Har-
court Brace and Company, New York.
Kraak, M.-J. (2003). The space-time cube revisited from a
geovisualization perspective. In Proceedings of Inter-
national Cartographic Conference, pages 1988–1995.
Kraak, M.-J. and de Vlag, D. E. V. (2007). Understanding
spatiotemporal patterns: visual ordering of space and
time. Cartographica, 42(2):153–161.
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpen-
dale, S. (2012). Empirical studies in information vi-
sualization: seven scenarios. IEEE Transactions on
Visualization and Computer Graphics, 18(9):1520–
1536.
Lundblad, P., Eurenius, O., and Heldring, T. (2009). In-
teractive visualization of weather and ship data. In
Proceedings of the International Conference on Infor-
mation Visualisation, pages 379–386.
MacEachren, A. M. and Kraak, M.-J. (2001). Research
challenges in geovisualization. Cartography and Ge-
ographic Information Science, 28(1):3–12.
Maciejewski, R., Tyner, B., Jang, Y., Zheng, C., Nehme,
R. V., Ebert, D. S., Cleveland, W. S., Ouzzani, M.,
Grannis, S. J., and Glickman, L. T. (2007). LAHVA:
Linked animal-human health visual analytics. In Pro-
ceedings of the IEEE Symposium on Visual Analytics
Science and Technology, pages 27–34.
Mandiak, M., Shah, P., Kim, Y., and Kesavadas, T. (2005).
Development of an integrated GUI framework for
post-disaster data fusion visualization. In Proceed-
ings of the International Conference on Information
Fusion, volume 2, pages 1131–1137.
Palmer, S. and Rock, I. (1994). Rethinking perceptual orga-
nization: The role of uniform connectedness. Psycho-
nomic Bulletin & Review, 1(1):29–55.
Plaisant, C. (2004). The challenge of information visualiza-
tion evaluation. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces, pages 109–
116.
Treinish, L. A. (2000). Visual data fusion for applications
of high-resolution numerical weather prediction. In
Proceedings of the Conference on Visualization, pages
477–480.
Ware, C. (2004). Information Visualization: Perception for
Design. Elseiver, San Francisco, second edition.
IVAPP2015-InternationalConferenceonInformationVisualizationTheoryandApplications
28