REFERENCES
Aggarwal, N. and Karl, W. (2006). Line detection in images
through regularized Hough transform. IEEE Transac-
tions on Image Processing, 15(3):582–591.
Akinlar, C. and Topal, C. (2011). EDLines: A real-time
line segment detector with a false detection control.
Pattern Recognition Letters, 32(13):1633–1642.
Atiquzzaman, M. and Akhtar, M. (1995). A robust Hough
transform technique for complete line segment de-
scription. Real-Time Imaging, 1(6):419–426.
Ayala-Ramirez, V., Garcia-Capulin, C. H., Perez-Garcia,
A., and Sanchez-Yanez, R. E. (2006). Circle detection
on images using genetic algorithms. Pattern Recogni-
tion Letters, 27(6):652–657.
Bandera, A., Prez-Lorenzo, J., Bandera, J., and Sandoval, F.
(2006). Mean shift based clustering of hough domain
for fast line segment detection. Pattern Recognition
Letters, 27(6):578 – 586.
Berlemont, S. and Olivo-Marin, J.-C. (2010). Combining
local filtering and multiscale analysis for edge, ridge,
and curvilinear objects detection. IEEE Transactions
on Image Processing, 19(1):74–84.
Borkar, A., Hayes, M., and Smith, M. (2012). A novel lane
detection system with efficient ground truth genera-
tion. IEEE Transactions on Intelligent Transportation
Systems, 13(1):365–374.
Burns, J. B., Hanson, A. R., and Riseman, E. M. (1986). Ex-
tracting straight lines. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(4):425–
455.
Cha, J., Cofer, R., and Kozaitis, S. (2006). Extended Hough
transform for linear feature detection. Pattern Recog-
nition, 39(6):1034–1043.
Chao, L., Zhong, W., and Lin, L. (2009). An improved HT
algorithm on straight line detection based on Freeman
chain code. In 2nd International Congress on Image
and Signal Processing, pages 1–4.
Choy, C., Ser, P.-K., and Siu, W.-C. (1995). Peak detection
in Hough transform via self-organizing learning. In
IEEE International Symposium on Circuits and Sys-
tems, ISCAS ’95., volume 1, pages 139–142 vol.1.
Chung, K.-L., Chang, T.-C., and Huang, Y.-H. (2009).
Comment on: Extended Hough transform for linear
feature detection. Pattern Recognition, 42(7):1612–
1614.
Desolneux, A., Moisan, L., and Morel, J.-M. (2000). Mean-
ingful alignments. International Journal of Computer
Vision, 40:7–23.
Du, S., Tu, C., and Sun, M. (2012). High accuracy Hough
transform based on butterfly symmetry. Electronics
Letters, 48(4):199–201.
Du, S., Tu, C., van Wyk, B. J., and Chen, Z. (2011).
Collinear segment detection using HT neighbor-
hoods. IEEE Transactions on Image Processing,
20(12):3612–3620.
Du, S., van Wyk, B., Tu, C., and Zhang, X. (2010). An
improved Hough transform neighborhood map for
straight line segments. IEEE Transactions on Image
Processing, 19(3):573–585.
Duan, H., Liu, X., and Liu, H. (2007). A nonuniform quan-
tization of Hough space for the detection of straight
line segments. In 2nd International Conference on
Pervasive Computing and Applications, ICPCA 2007,
pages 149–153.
Duda, R. O. and Hart, P. E. (1972). Use of the Hough
transformation to detect lines and curves in pictures.
Graphics and Image Processing, 15:11–15.
Fernandes, L. A. and Oliveira, M. M. (2008). Real-time
line detection through an improved Hough transform
voting scheme. Pattern Recognition, 41(1):299 – 314.
Furukawa, Y. and Shinagawa, Y. (2003). Accurate and ro-
bust line segment extraction by analyzing distribution
around peaks in Hough space. Computer Vision and
Image Understanding, 92(1):1–25.
Guil, N., Villalba, J., and Zapata, E. (1995). A fast Hough
transform for segment detection. IEEE Transactions
on Image Processing, 4(11):1541–1548.
Guru, D., Shekar, B., and Nagabhushan, P. (2004). A
simple and robust line detection algorithm based on
small eigenvalue analysis. Pattern Recognition Let-
ters, 25(1):1 – 13.
Ho, C. G., Young, R. C. D., Bradfield, C. D., and Chatwin,
C. R. (2000). A fast Hough transform for the
parametrisation of straight lines using fourier meth-
ods. Real-Time Imaging, 6(2):113–127.
Hough, P. (1962). Method and means for recognizing com-
plex patterns. U.S. Patent 3.069.654.
Ji, J., Chen, G., and Sun, L. (2011). A novel Hough trans-
form method for line detection by enhancing accumu-
lator array. Pattern Recognition Letters, 32(11):1503
– 1510.
Ji, Q. and Haralick, R. M. (2001). Error propagation for the
Hough transform. Pattern Recognition Letters, 22(6-
7):813 – 823.
Kahn, P., Kitchen, L., and Riseman, E. M. (1990). A fast
line finder for vision-guided robot navigation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 12(11):1098–1102.
Kamat-Sadekar, V. and Ganesan, S. (1998). Complete de-
scription of multiple line segments using the Hough
transform. Image and Vision Computing, 16(910):597
– 613.
Kiryati, N. and Bruckstein, A. (1991). Antialiasing the
Hough transform. CVGIP: Graphical Models and Im-
age Processing, 53(3):213 – 222.
Koeck, J. and Zhang, W. (2002). Video compass. In Com-
puter Vision - ECCV 2002, volume 2353 of Lecture
Notes in Computer Science, pages 476–490. Springer
Berlin Heidelberg.
Matas, J., Galambos, C., and Kittler, J. (2000). Robust
detection of lines using the progressive probabilistic
Hough transform. Computer Vision and Image Un-
derstanding, 78(1):119 – 137.
Nevatia, R. and Babu, K. R. (1980). Linear feature extrac-
tion and description. Computer Graphics and Image
Processing, 13(3):257 – 269.
Nguyen, T. T., Pham, X. D., and Jeon, J. (2008). An im-
provement of the standard Hough transform to detect
AReviewofHoughTransformandLineSegmentDetectionApproaches
417