tracking, In Conference on Dynamic 3D Imaging, pp.
58–69.
Camplani M., Salgado L., 2014. Background foreground
segmentation with RGB-D Kinect data: An efficient
combination of classifiers, Journal of Visual
Communication and Image Representation, vol 25(1),
pp. 122-136.
Crabb C., Tracey R., Puranik A., Davis J., 2008. Real-time
foreground segmentation via range and color
imaging”, In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 1–5.
Do M., Lin D., Meyer G., Nguyen Q., Patel S., 2014.
Systems and methods for accurate user foreground
video extraction, U.S. Patent Application 13/083,470.
Elgammal A., Duraiswami R., Harwood D., Davis L.,
2002. Background and foreground modeling using
non-parametric kernel density estimation for visual
surveillance, In Proceedings of the IEEE, vol 90,
pp.1151–1163.
Fernandez-Sanchez E., Diaz J., Ros E., 2013. Background
Subtraction Based on Color and Depth Using Active
Sensors. Sensors 13 (7), p. 8895-8915.
Frick A., Franke M., Koch R., 2011. Time-consistent
foreground segmentation of dynamic content from
color and depth video, Pattern Recognition, Elsevier,
pp. 296–305.
Gallego J., Pardas M., 2014. Region based foreground
segmentation combining color and depth sensors via
logarithmic opinion pool decision, Journal of Visual
Communication and Image Representation, vol 25(1),
pp.184-194.
Jourdheuil L., Allezard N., Château T. and Chesnais T.,
2012. Heterogeneous adaboost with realtime
constraints - application to the detection of pedestrians by
stereovision, In Proceedings VISAPP’12, pp. 539–546.
Lefevre T., Dorizzi B., Garcia-Salicetti S., Lempérière N.,
Belardi S., 2013. Effective elliptic fitting for iris
normalization. Computer Vision and Image
Understanding 117(6): 732-745.
Levin, A., Rav-Acha, A., Lischinski, D., 2008. Spectral
matting. IEEE transactions on pattern analysis and
machine intelligence, 30(10), pp.1699–712.
Maddalena I., Petrosino A., 2008. A self-organizing
approach to background subtraction for visual
surveillance applications, IEEE Transactions on Image
Processing 17, pp. 1168–1177.
Maimone A., Bidwell J., Peng K., Fuchs H., 2012.
Enhanced personal autostereoscopic telepresence
system using commodity depth cameras. Computers &
Graphics 36 (7) p. 791-807.
Richtsfield A., Morwald T., Prankl J., Balzer J., 2012.
Towards scene understanding – object segmentation
using using RGBD-images, in Computer Vision
Winter Workshop.
Schiller I., Koch R., 2011. Improved video segmentation
by adaptive combination of depth keying and mixture-
of-Gaussians, Image Analysis, pp. 59–68.
Serra J., 1982. Image Analysis and Mathematical
Morphology, Academic Press, London.
Soille P., 1989. Morphological Image Analysis : Principles
and Applications. Springer-Verlag.
Stormer A., Hofmann M., Rigoll G., 2010. Depth gradient
based segmentation of overlapping foreground objects
in range images, In proceedings of IEEE 13th
Conference on Information Fusion, pp.1–4.
Stückler J., Behnke S., 2010. Combining depth and color
cues for scale and Viewpoint Invariant object
segmentation and recognition using Random Forests,
In proceedings International Conference on Intelligent
Robots and Systems (IROS), pp. 4566-4571.
Tucker C., 1979.Red and photographic infrared linear
combinations for monitoring vegetation, Remote
Sensing of Environment Volume 8, Issue 2, May
1979, Pages 127–150.
Wang J., Cohen M., 2007. Image and Video Matting : A
Survey. Computer Graphics and Vision, pp.1–78.
Wang L., Zhang C., Yang R., Zhang C., 2010. Tof cut:
towards robust real-time foreground extraction using a
time-of-flight camera, Conference 3D PVT.
Wu Q., Boulanger P., Bischof W., 2008. Robust real-time
bi-layer video segmentation using infrared video, In
proceedings of Conference on Computer and Robot
Vision (CRV), pp. 87–94.
Xia L., Chen C., Aggarwal J., 2011. Human detection
using Depth information by Kinect, IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 15-22.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
62