weight robot behave like a human arm, and check this
behaviour against the experimental data collected.
ACKNOWLEDGEMENTS
This work was partially supported by Fundac¸˜ao para
a Ciˆencia e a Tecnologia, through IDMEC under
LAETA, and under the joint Portuguese–Slovakian
project SK-PT-0025-12.
REFERENCES
Adewusi, S., Rakheja, S., and Marcotte, P. (2012). Biome-
chanical models of the human hand-arm to simulate
distributed biodynamic responses for different pos-
tures. International Journal of Industrial Ergonomics,
42(2):249–260.
Djordjevic, V. D., Jaric, J., Fabry, B., Fredberg, J. J., and
Stamenovic, D. (2003). Fractional derivatives embody
essential features of cell rheological behavior. Annals
of Biomedical Engineering, 31:692–699.
Fu, M. J. and Cavusoglu, M. C. (2012). Human-arm-and-
hand-dynamic model with variability analyses for a
stylus-based haptic interface. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
PP(99):1–12.
Haykin, S. (1999). Neural Networks—A Comprehensive
Foundation. Prentice Hall International, Inc, New Jer-
sey, U.S.A., 2nd edition.
Jang, J.-S. R., Sun, C.-T., and Mizutani, E. (1997). Neuro-
fuzzy and soft computing. Prentice-Hall, Upper Saddle
River. chapters 8 to 11.
Magin, R. L. (2004). Fractional Calculus in Bioengineer-
ing. Begell House.
Mainardi, F. (2010). Fractional Calculus and Waves in Lin-
ear Viscoelasticity. An Introduction to Mathematical
Models. Imperial College Press, London.
Malti, R., Victor, S., and Oustaloup, A. (2008). Advances in
system identification using fractional models. ASME
Journal of Computational and Nonlinear Dynamics,
3:021401–021401.
Mandic, D. and Chambers, J. (2001). Recurrent Neural Net-
works for Prediction—learning algorithms, architec-
tures and stability. John Wiley & Sons, LTD, Chich-
ester, England.
Marquardt, D. (1963). An algorithm for least squares es-
timation of nonlinear parameters. SIAM Journal on
Applied Mathematics, 11:431–441.
Miller, K. S. and Ross, B. (1993). An introduction to the
fractional calculus and fractional differential equa-
tions. John Wiley and Sons, New York.
Mobasser, F. and Hashtrudi-Zaad, K. (2006). A method for
online estimation of human arm dynamics. In Pro-
ceedings of th 28th Annual International Conference
of the IEEE Engineering in Medicine and Biology So-
ciety (EMBS’06), pages 2412–2416.
Nagarsheth, H., Savsani, P., and Patel, M. (2008). Modeling
and dynamics of human arm. In Proceedings of the
2008 IEEE International Conference on Automation
Science and Engineering (CASE’08), pages 924–928.
Nørgaard, M., Ravn, O., Poulsen, N. K., and Hansen,
L. K. (2003). Neural networks for modelling and con-
trol of dynamic systems: a practitioner’s handbook.
Springer-Verlag, London.
Park, S., Lim, H., Kim, B.-S., and Song, J.-B. (2006). De-
velopment of safe mechanism for surgical robots us-
ing equilibrium point control method. In Larsen, R.,
Nielsen, M., and Sporring, J., editors, MICCAI 2006,
pages 570–577. Springer Berlin / Heidelberg.
Podlubny, I. (1999). Fractional differential equations: an
introduction to fractional derivatives, fractional dif-
ferential equations, to methods of their solution and
some of their applications. Academic Press, San
Diego.
Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993).
Fractional integrals and derivatives. Gordon and
Breach, Yverdon.
Sommacal, L., Melchior, P., Cabelguen, J.-M., Oustaloup,
A., and Ijspeert, A. J. (2007a). Advances in Frac-
tional Calculus: Theoretical Developments and Ap-
plications in Physics and Engineering, chapter Frac-
tional Multimodels of the Gastrocnemius Muscle for
Tetanus Pattern, pages 271–285. Springer.
Sommacal, L., Melchior, P., Dossat, A., Petit, J., Ca-
belguen, J.-M., Oustaloup, A., and Ijspeert, A. J.
(2007b). Improvement of the muscle fractional mul-
timodel for low-rate stimulation. Biomedical Signal
Processing and Control, 2:226–233.
Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.-
M., and Ijspeert, A. J. (2008). Fractional multi-models
of the frog gastrocnemius muscle. Journal of Vibra-
tion and Control, 14(9-10):1415–1430.
Ta¨ıx, M., Tran, M. T., ares, P. S., and Guigon, E. (2013).
Generating human-like reaching movements with a
humanoid robot: A computational approach. Journal
of Computational Science, 4(4):269–284.
Tejado, I., Val´erio, D., Pires, P., and Martins, J. (2013).
Fractional order human arm dynamics with variabil-
ity analyses. Mechatronics, 23:805–812.
Val´erio, D., Ortigueira, M. D., and S´a da Costa, J. (2008).
Identifying a transfer function from a frequency re-
sponse. ASME Journal of Computational and Nonlin-
ear Dynamics, 3(2):021207–021207.
Val´erio, D. and S´a da Costa, J. (2011). An introduction
to single-input, single-output Fractional Control. IET
Control Theory & Applications, 5(8):1033–1057.
Val´erio, D. and S´a da Costa, J. (2013). An Introduction to
Fractional Control. IET.
Venture, G., Yamane, K., and Nakamura, Y. (2006). Identi-
fication of human musculo-tendon subject specific dy-
namics using musculo-skeletal computations and non
linear least square. In BioRob’06, pages 211–216.
DirectandInverseModelsofHumanArmDynamics
161