graphics.
Wolfe, N., 1976. Risk for breast cancer development
determined by mammographic parenchimal pattern.
Cancer.
Cheng, H. D., Shi, X. J., Min, R., Hu, L. M., Cai, X. P.,
Du, H. N., 2005. Approaches for automated detection
and classification of masses in mammograms. Pattern
Recognition, Elsevier.
Kom, G., Tiedeu, A., Kom, M., 2005. Automated
detection of masses in mammograms by local adaptive
thresholding. Computers in Biology and Medicine.
Elsevier.
te Brake, G. M., Karssemeijer, N., Hendriks, J. H., 1998.
Automated detection of breast carcinomas not detected
in a screening program. Radiology. Elsevier.
Petrick, N., Chan, H. P., Sahiner, B., Wei, D., 1996. An
adaptive density-weighted contrast enhancement filter
for mammographic breast mass detection. IEEE
Transaction Medical Imaging. IEEE.
Gupta, R., Undrill, P. E., 1995. The use of texture analysis
to identify suspicious masses in mammography. Phys.
Med. Bio.
Viton, J. L., Rasigni, M. R. G., Llebaria, A., 1996. Method
for characterizing masses in digital mammograms.
Opt. Eng.
Li, H., Wang, Y., Ray Liu, K. J., Shih-Chung, B. L.,
Freedman, M. T., 2001. Computerized radiographic
mass detection. Part I-II: lesion site selection by
morphological enhancement and contextual
segmentation. IEEE Transaction Image Processing.
IEEE.
Highnam, R., Brady, M. 1999. Mammographic Image
Analysis. Kluwer Academic Publishers.
Tourassi, G. D., Vargas-Voracek, R.. 2003. Computer-
assisted detection of mammographic masses: a
template matching scheme based on mutual
information. Med. Phys.
Rogova, G. L., Ke, C., Acharya, R., Stomper, P., 1999.
Feature Choice for detection of cancerous masses by
constrained optimization. In SPIE Conference on
Image Processing.
Sameti, M., Ward, R. K., 1996 A fuzzy segmentation
algorithm for mammogram partitioning. Digital
Mammography. Elsevier.
Zheng, B., Chang, Y. H., Wang, X. H., Good, W. F., 1999.
Comparison of artificial neural network and Bayesian
belief network in a computer assisted diagnosis
scheme for mammography. In IEEE International
conference on Neural Network.
Sahiner, B., Chan, H. P., Petrick, N., Helvie, M. A.,
Goodsitt, M. M., 1998. Desing of high-sensitivity
classifier based on a genetic algorithm: application to
computer aided diagnosis. Phys. Med. Bio.
Constantinidis, A. S., Fairhust, M. C., Rahman, A. F. R.,
2001. A new multi-expert decision combination
algorithm and its application to the detection of
circumscribed masses in digital mammograms.
Pattern Recognition.
Cascio, D., Fauci, F., Magro, R., Raso, G., Bellotti, R., De
Carlo, F., Tangaro, S., De Nunzio, G,. Quarta, M.,
Forni, G., others. 2006. Mammogram Segmentation by
Contour Searching and Mass Lesions Classification
With Neural Network. IEEE Transaction on Nuclear
Science. IEEE.
Domìnguez, A. R., Nandi, A. K., 2008. Detection of
masses in mammograms via statistically based
enhancement, multilevel-thresholding segmentation,
and region selection. Computerized Medical Imaging
and Graphics. Elsevier.
Choi, J. Y., Ro, Y. M.. 2012. Multiresolution local binary
pattern texture analysis combined with variable
selection for application to false-positive reduction in
computer-aided detection of breast masses on
mammograms. Physics in Medicine and Biology. Iop
Publishing.
Oliver, A., Freixenet, J., Perez, E., Pont, J., Denton, E. R.
E., Zwiggelar, R.. 2010. A review of automatic mass
detection and segmentation in mammographic masses.
Med. Image Analysis.
Muramatsu, C., Nishimura, K., Endo, T., Oiwa, M.,
Shiraiwa, M., Doi, K., Fujita, H., 2013. Representation
of lesions similarity by use of Multidimensional
Scaling for Breast Masses on Mammograms. Digit
Imaging. Springer.
Natarajan, P., Ghosh, D., Sandeep, K. N., Jilani, S., 2013.
Detection of Tumor in Mammogram Images using
Extended Local Minima Threshold. IJET International
Journal of Engineering and Technology.
Alias, A., Paulchamy, B.. 2014. Detection of Breast
Cancer using artifical neural network. International
Journal of Innovative Research in Science.
Bay, H., Tuytelaars, T., Van Gool, L., 2008. Surf: Speeded
up robust features. Computer vision and image
understanding. Elsevier.
Farruggia, A., Magro, R., Vitabile, S., 2014. A text based
indexing system for mammographic image retrieval
and classification. Future Generation Computer
Systems. Elsevier.
Kekre, H. B., Sarode, Tanuja, K., Gharge, Saylee M.,
2009. Tumor Detection in mammography images
using vector quantization technique. International
Journal of Intellingent Information Technology
Application.
Lau, T. K., Bischof, W. F., 1991. Automated detection of
breast tumors using the asymmetry approach.
Computers and biomedical research. Elsevier.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
308