REFERENCES
Ackers, G. K., Johnson, A. D., and Shea, M. A.
(1982). Quantitative model for gene regulation by
lambda phage repressor. Proceedings of the National
Academy of Sciences, 79(4):1129–1133.
Banerjee, O., Ghaoui, L., and D’Aspremont, A. (2008).
Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data.
Journal of Machine Learing Research, 9:485–516.
Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Evan-
gelista, C., Kim, I. F., Tomashevsky, M., Marshall,
K. A., Phillippy, K. H., Sherman, P. M., Muertter,
R. N., Holko, M., Ayanbule, O., Yefanov, A., and
Soboleva, A. (2011). NCBI GEO: archive for func-
tional genomics data set - 10 years on. Nucleic Acids
Research, 39:D1005–D1010.
Bento, J., Ibrahimi, M., and Montanari, A. (2010). Learn-
ing networks of stochastic differential equations. In
Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J.,
Zemel, R. S., and Culotta, A., editors, NIPS, pages
172–180. Curran Associates, Inc.
Bento, J., Ibrahimi, M., and Montanari, A. (2011). Infor-
mation theoretic limits on learning stochastic differ-
ential equations. In Kuleshov, A., Blinovsky, V., and
Ephremides, A., editors, ISIT, pages 855–859. IEEE.
Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood,
L., Baliga, N. S., and Thorsson, V. (2006). The infer-
elator: an algorithm for learning parsimonious regula-
tory networks from systems-biology data sets de novo.
Genome Biology, 7(5).
Dream4Challenge (2009). DREAM4, Chal-
lenge 2 – In Silico Network Challenge.
http://wiki.c2b2.columbia.edu/dream/index.php?title=D4c2.
Elidan, G., Ninio, M., Friedman, N., and Schuurmans, D.
(2002). Data perturbation for escaping local maxima
in learning. In In AAAI, pages 132–139.
Gardner, T. S. and Collins, J. J. (2000). Neutralizing noise
in gene networks. Nature, 405(6786).
Grant, M. and Boyd, S. (2008). Graph implementations
for nonsmooth convex programs. In Blondel, V.,
Boyd, S., and Kimura, H., editors, Recent Advances in
Learning and Control, volume 371 of Lecture Notes
in Control and Information Sciences, pages 95–110.
Springer London.
Grant, M. and Boyd, S. (2012). CVX: Matlab software
for disciplined convex programming, version 2.0 beta.
http://cvxr.com/cvx.
Klamt, S., Flassig, R., and Sundmacher, K. (2010). TRAN-
SWESD: inferring cellular networks with transitive
reduction. Bioinformatics, 26(17):2160–2168.
Koller, D. and Friedman, N. (2009). Probabilistic graphical
models: principles and techniques. MIT Press.
Ly, D. L. and Lipson, H. (2012). Learning symbolic rep-
resentations of hybrid dynamical systems. Journal of
Machine Learning Research, 13:3585–3618.
Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Flo-
reano, D., and Stolovitzky, G. (2010). Revealing
strengths and weaknesses of methods for gene net-
work inference. Proceedings of the National Academy
of Sciences.
Marbach, D., Schaffter, T., Mattiussi, C., and Floreano,
D. (2009). Generating realistic in silico gene net-
works for performance assessment of reverse engi-
neering methods. Journal of Computational Biology,
16(2):229–239.
Pinna, A., Soranzo, N., and de la Fuente, A.
(2010). From knockouts to networks: estab-
lishing direct cause-effect relationships through
graph analysis. PLoS ONE 5(10): e12912.
doi:10.1371/journal.pone.0012912.
Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K.,
Alexopoulos, L. G., Xue, X., Clarke, N. D., Altan-
Bonnet, G., and Stolovitzky, G. (2010). Towards a
rigorous assessment of systems biology models: The
DREAM3 challenges. PLoS ONE, 5(2):e9202.
Schaffter, T., Marbach, D., and Floreano, D. (2011).
GeneNetWeaver: in silico benchmark generation and
performance profiling of network inference methods.
Bioinformatics, 27(16):2263–2270.
Voortman, M., Dash, D., and Druzdzel, M. (2010). Learn-
ing why things change: The difference-based causal-
ity learner. In Proceedings of the Twenty-Sixth An-
nual Conference on Uncertainty in Artificial Intelli-
gence (UAI).
Yip, K., Alexander, R., Yan, K., and Gerstein, M.
(2010). Improved reconstruction of In Silico
gene regulatory networks by integrating knockout
and perturbation data. PLoS ONE 5(1): e8121.
doi:10.1371/journal.pone.0008121, 5(1):e8121.
ICPRAM2015-InternationalConferenceonPatternRecognitionApplicationsandMethods
332