REFERENCES
Al-Fahoum, A. and Howitt, I. (1999). Combined wavelet
transformation and radial basis neural networks for
classifying life-threatening cardiac arrhythmias.
Medical & biological engineering & computing,
37(5), pp.566--573.
Artis, S., Mark, R. and Moody, G. (1991). Detection of
atrial fibrillation using artificial neural networks.
pp.173--176.
Beale, R. and Fiesler, E. (1997). Handbook of neural
computation. 1st ed. Bristol: Institute of Physics Pub.
Clayton, R., Murray, A. and Campbell, R. (1994).
Recognition of ventricular fibrillation using neural
networks. Medical and Biological Engineering and
Computing, 32(2), pp.217--220.
Dash, S., Chon, K., Lu, S. and Raeder, E. (2009).
Automatic Real Time Detection of Atrial Fibrillation.
Ann Biomed Eng, 37(9), pp.1701-1709.
De Chazal, P., O'Dwyer, M. and Reilly, R. (2004).
Automatic classification of heartbeats using ECG
morphology and heartbeat interval features.
Biomedical Engineering, IEEE Transactions on,
51(7), pp.1196--1206.
Fletcher, T. (2009). Support vector machines explained.
Tutorial paper. [online] Available at:
http://www.tristanfletcher.co.uk/. [Accessed 5 Nov.
2014]
Fowler, J. (2005). The redundant discrete wavelet
transform and additive noise. Signal Processing
Letters, IEEE, 12(9), pp.629--632.
Güler, I. (2005). ECG beat classifier designed by
combined neural network model. Pattern recognition,
38(2), pp.199--208.
Huang, C., Ye, S., Chen, H., Li, D., He, F. and Tu, Y.
(2011). A Novel Method for Detection of the
Transition Between Atrial Fibrillation and Sinus
Rhythm. IEEE Transactions on Biomedical
Engineering, 58(4), pp.1113-1119.
Huff, J. (2006). ECG workout. 1st ed. Ambler, PA:
Lippincott Williams & Wilkins.
Iliev, I., Krasteva, V. and Tabakov, S. (2007). Real-time
detection of pathological cardiac events in the
electrocardiogram. Physiological measurement, 28(3),
p.259.
Inan, O., Giovangrandi, L. and Kovacs, G. (2006). Robust
neural-network-based classification of premature
ventricular contractions using wavelet transform and
timing interval features. Biomedical Engineering,
IEEE Transactions on, 53(12), pp.2507--2515.
Kaiser, S., Kirst, M. and Kunze, C. (2010). Automatic
Detection of Atrial Fibrillation for Mobile Devices.
Springer, pp.258--270.
Kara, S. and Okandan, M. (2007). Atrial fibrillation
classification with artificial neural networks. Pattern
Recognition, 40(11), pp.2967--2973.
Khadra, L., Al-Fahoum, A. and Al-Nashash, H. (1997).
Detection of life-threatening cardiac arrhythmias using
the wavelet transformation. Medical and Biological
Engineering and Computing, 35(6), pp.626--632.
Langley, P., Dewhurst, M., Di Marco, L., Adams, P.,
Dewhurst, F., Mwita, J., Walker, R. and Murray, A.
(2012). Accuracy of algorithms for detection of atrial
fibrillation from short duration beat interval
recordings. Medical Engineering & Physics, 34(10),
pp.1441-1447.
Mallat, S. and Zhong, S. (1992). Characterization of
signals from multiscale edges. IEEE Transactions on
pattern analysis and machine intelligence, 14(7),
pp.710--732.
Martis, R., Krishnan, M., Chakraborty, C., Pal, S., Sarkar,
D., Mandana, K. and Ray, A. (2012). Automated
screening of arrhythmia using wavelet based machine
learning techniques. Journal of medical systems,
36(2), pp.677--688.
Moody, G. and Mark, R. (1983). A new method for
detecting atrial fibrillation using RR intervals.
Computers in Cardiology, 10, pp.227-230.
Moody, G. and Mark, R. (2001). The impact of the MIT-
BIH arrhythmia database. Engineering in Medicine
and Biology Magazine, IEEE, 20(3), pp.45--50.
Park, J., Lee, S. and Jeon, M. (2009). Atrial fibrillation
detection by heart rate variability in Poincare plot.
BioMed Eng OnLine, 8(1), p.38.
Prasad, G. and Sahambi, J. (2003). Classification of ECG
arrhythmias using multi-resolution analysis and neural
networks. 1, pp.227--231.
Shen, C., Kao, W., Yang, Y., Hsu, M., Wu, Y. and Lai, F.
(2012). Detection of cardiac arrhythmia in
electrocardiograms using adaptive feature extraction
and modified support vector machines. Expert Systems
with Applications, 39(9), pp.7845--7852.
Silipo, R. and Marchesi, C. (1998). Artificial neural
networks for automatic ECG analysis. Signal
Processing, IEEE Transactions on, 46(5), pp.1417--
1425.
Tateno, K. and Glass, L. (2001). Automatic detection of
atrial fibrillation using the coefficient of variation and
density histograms of RR and ΔRR intervals. Med.
Biol. Eng. Comput., 39(6), pp.664-671.
Welch, P. (1967). The use of fast Fourier transform for the
estimation of power spectra: a method based on time
averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2),
pp.70--73.
Yang, T., Devine, B. and Macfarlane, P. (1994). Artificial
neural networks for the diagnosis of atrial fibrillation.
Medical and Biological Engineering and Computing,
32(6), pp.615--619.
Ye, C., Kumar, B. and Coimbra, M. (2012). Heartbeat
classification using morphological and dynamic
features of ECG signals. Biomedical Engineering,
IEEE Transactions on, 59(10), pp.2930--2941.
SpectralandTimeDomainParametersforTheClassificationofAtrialFibrillation
337