Interfaces in a Game-theoretic Setting for Controlling the Plasmodium Motions

Andrew Schumann, Krzysztof Pancerz

2015

Abstract

The plasmodium is the large one-cell organism containing a mass of multinucleate protoplasm. It is an active feeding stage of Physarum polycephalum or Badhamia utricularis and it moves by protoplasmic streaming which reverses every 30-60 s. In moving, the plasmodium switches its direction or even multiplies in accordance with different biosignals attracting or repelling its motions, e.g. in accordance with pheromones of bacterial food, which attract the plasmodium, and high salt concentrations, which repel it. So, the plasmodium motions can be controlled by different topologies of attractants and repellents so that the plasmodium can be considered a programmable biological device in the form of a timed transition system, where attractants and repellents determine the set of all plasmodium transitions. Furthermore, we can define $p$-adic probabilities on these transitions and, using them, we can define a knowledge state of plasmodium and its game strategy in occupying attractants as payoffs for the plasmodium. As a result, we can regard the task of controlling the plasmodium motions as a game and we can design different interfaces in a game-theoretic setting for the controllers of plasmodium transitions.

References

  1. Abramsky, S., P.-A. Mellies. 1999. “Concurrent Games and Full Completeness.” Proceedings of the 14th Symposium on Logic in Computer Science, 431-442.
  2. Adamatzky, A. 2010. Physarum Machines: Computers from Slime Mould (World Scientific Series on Nonlinear Science, Series A). World Scientific Publishing Company.
  3. Adamatzky, A., V. Erokhin, M. Grube, Th. Schubert, A. Schumann. 2012. “Physarum Chip Project: Growing Computers From Slime Mould.” Int. J. of Unconventional Computing 8(4): 319-323.
  4. Khrennikov, A., A. Schumann. 2006. “Logical Approach to p-adic Probabilities.” Bulletin of the Section of Logic 35(1): 49-57.
  5. Khrennikov, A., A. Schumann. 2009. “p-Adic Physics, Non-well-Founded Reality and Unconventional Computing.” P-Adic Numbers, Ultrametric Analysis, and Applications 1(4): 297-306.
  6. Koblitz, N. 1984. p-adic numbers, p-adic analysis and zeta functions. Second edition., Springer-Verlag.
  7. Nakagaki, T., H. Yamada, A. Toth. 2000. “Maze-solving by an amoeboid organism.” Nature 407: 470-470.
  8. Nakagaki, T., H. Yamada, and A. Toth. 2001. “Path finding by tube morphogenesis in an amoeboid organism.” Biophysical Chemistry 92: 47-52.
  9. Nakagaki, T., M. Iima, T. Ueda, Y. Nishiura, T. Saigusa, A. Tero, R. Kobayashi, K. Showalter. 2007. “Minimumrisk path finding by an adaptive amoeba network.” Physical Review Letters 99: 68-104.
  10. Neubert, H., W. Nowotny, K. Baumann, H. Marx. 1995. Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung O sterreichs. Bd. 2, Karlheinz Baumann Verlag, Gomaringen.
  11. Saigusa, T., A. Tero, T. Nakagaki, Y. Kuramoto. 2008. “Amoebae Anticipate Periodic Events.” Phys. Rev. Lett. 100(1): 018101.
  12. Shirakawa, T., Y.-P. Gunji, and Y. Miyake. 2011. “An associative learning experiment using the plasmodium of Physarum polycephalum.” Nano Communication Networks 2: 99-105.
  13. Schumann, A. 2008. “Non-Archimedean Fuzzy and Probability Logic.” J. of Applied Non-Classical Logics 18(1): 29-48.
  14. Schumann, A. 2010. “Non-Archimedean Valued Extension of Logic LP and p-Adic Valued Extension of Logic BL.” J. of Uncertain Systems 4(2): 99-115.
  15. Schumann, A., L. Akimova. 2013. “Simulating of Schistosomatidae (Trematoda: Digenea) Behavior by Physarum Spatial Logic.” Annals of Computer Science and Information Systems, Volume 1. Proceedings of the 2013 Federated Conference on Computer Science and Information Systems. IEEE Xplore, 225-230.
  16. Schumann, A., K. Pancerz. 2013. “Towards an ObjectOriented Programming Language for Physarum Polycephalum Computing.” In Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P'2013). Edited by M. Szczuka, L. Czaja, M. Kacprzak. Warsaw, 389-397.
  17. Sun, T., S. Tsuda, K.-P. Zauner, H. Morgan. 2009. “Single cell imaging using electrical impedance tomography.” In NEMS 7809: Proc. of the 2009 4th IEEE Int. Conf, on Nano/Micro Engineered and Molecular Systems, 858-863.
  18. Tsuda, S., M. Aono, and Y.P. Gunji. 2004. “Robust and emergent Physarum-computing.” BioSystems 73: 45- 55.
  19. Tsuda, S., J. Jones, A. Adamatzky, J. Mills. 2011. “Routing Physarum with electrical flow/current.” Int. J. Nanotechnology and Molecular Comput.
  20. Vladimirov, V. S., I. V. Volovich. 1989. “p-Adic Quantum Mechanics,” Commun. Math. Phys. 123: 659-676.
  21. Volovich, I.V. 1987. “Number theory as the ultimate theory.” CERN preprint, CERN-TH.4791/87.
Download


Paper Citation


in Harvard Style

Schumann A. and Pancerz K. (2015). Interfaces in a Game-theoretic Setting for Controlling the Plasmodium Motions . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 338-343. DOI: 10.5220/0005285203380343


in Bibtex Style

@conference{biosignals15,
author={Andrew Schumann and Krzysztof Pancerz},
title={Interfaces in a Game-theoretic Setting for Controlling the Plasmodium Motions},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={338-343},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005285203380343},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - Interfaces in a Game-theoretic Setting for Controlling the Plasmodium Motions
SN - 978-989-758-069-7
AU - Schumann A.
AU - Pancerz K.
PY - 2015
SP - 338
EP - 343
DO - 10.5220/0005285203380343