may lead to non-comparable results. Thus, when inte-
grating data in a knowledge base, detailed information
about the experimental setup and the genetic back-
ground are necessary. Only then, valid and consistent
metabolic models can be derived.
The CyanoFactory KB takes a first step in the di-
rection of strain specific databases. This, however,
requires a high investment in man-month of skilled
personnel. Another important problem that we are
currently addressing is the way of data integration
from diverse data sources. While the systems biology
markup language (SBML) provides a good founda-
tion for data exchange, strong effort has to be invested
in data-pipeline setup. On the long run, research con-
sortia need special funding solely directed to manual
data(base) curation. In return, a sustainable and co-
herent data source for follow-up research can be es-
tablished.
ACKNOWLEDGEMENT
We want to thank Eric Frenzel for the creation of the
SBGN networks. This project has received funding
from the European Union’s Seventh Programme for
research, technological development and demonstra-
tion under grant agreement No 308518, CyanoFac-
tory.
REFERENCES
Arzt, S., Starlinger, J., Arnold, O., Kr
¨
oger, S., Jaeger, S.,
and Leser, U. (2011). Pipa: Custom integration of pro-
tein interactions and pathways. In Workshop Daten In
den Lebenswissenschaften, Berlin, Germany. Citeseer.
Baumbach, J. (2007). CoryneRegNet 4.0 – A refer-
ence database for corynebacterial gene regulatory net-
works. BMC Bioinformatics, 8(1):429.
Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M.,
Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork,
P., von Mering, C., and Jensen, L. J. (2013). STRING
v9.1: protein-protein interaction networks, with in-
creased coverage and integration. Nucleic Acids Res.,
41(Database issue):D808–815.
Fujisawa, T., Okamoto, S., Katayama, T., Nakao, M.,
Yoshimura, H., Kajiya-Kanegae, H., Yamamoto, S.,
Yano, C., Yanaka, Y., Maita, H., Kaneko, T., Tabata,
S., and Nakamura, Y. (2014). CyanoBase and Rhi-
zoBase: databases of manually curated annotations
for cyanobacterial and rhizobial genomes. Nucleic
Acids Research, 42(Database issue):D666–70.
Gamermann, D., Montagud, A., Infante, R. A. J., Triana,
J., de Crdoba, P. F., and Urchuegua (2014). PyNet-
Met: Python tools for efficient work with networks
and metabolic models. Computational and Mathemat-
ical Biology, 3(5):1–11.
Guberman, J. M., Ai, J., Arnaiz, O., Baran, J., Blake,
A., Baldock, R., Chelala, C., Croft, D., Cros, A.,
Cutts, R. J., Di G
´
enova, A., Forbes, S., Fujisawa, T.,
Gadaleta, E., Goodstein, D. M., Gundem, G., Hag-
garty, B., Haider, S., Hall, M., Harris, T., Haw, R., Hu,
S., Hubbard, S., Hsu, J., Iyer, V., Jones, P., Katayama,
T., Kinsella, R., Kong, L., Lawson, D., Liang, Y.,
Lopez-Bigas, N., Luo, J., Lush, M., Mason, J.,
Moreews, F., Ndegwa, N., Oakley, D., Perez-Llamas,
C., Primig, M., Rivkin, E., Rosanoff, S., Shepherd,
R., Simon, R., Skarnes, B., Smedley, D., Sperling,
L., Spooner, W., Stevenson, P., Stone, K., Teague, J.,
Wang, J., Wang, J., Whitty, B., Wong, D. T., Wong-
Erasmus, M., Yao, L., Youens-Clark, K., Yung, C.,
Zhang, J., and Kasprzyk, A. (2011). BioMart Central
Portal: an open database network for the biological
community. Database, 2011(0):bar041–bar041.
Hippe, K., Kormeier, B., T
¨
opel, T., and Janowski, S.
(2010). DAWIS-MD-A Data Warehouse System for
Metabolic Data. GI Jahrestagung.
Ikeuchi, M. and Tabata, S. (2001). Synechocystis sp. PCC
6803 - a useful tool in the study of the genetics of
cyanobacteria. Photosynthesis research., 70(1):73–
83.
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furu-
michi, M., and Tanabe, M. (2014). Data, informa-
tion, knowledge and principle: back to metabolism in
KEGG. Nucleic Acids Res., 42(Database issue):199–
205.
Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E.,
Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura,
M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno,
A., Muraki, A., Nakazaki, N., Naruo, K., Okumura,
S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe,
A., Yamada, M., Yasuda, M., and Tabata, S. (1996).
Sequence analysis of the genome of the unicellular
cyanobacterium Synechocystis sp. strain PCC6803. II.
Sequence determination of the entire genome and as-
signment of potential protein-coding regions. DNA
Research: An International Journal for Rapid Pub-
lication of Reports on Genes and Genomes, 3(3):109–
136.
Kanesaki, Y., Shiwa, Y., Tajima, N., Suzuki, M., Watanabe,
S., Sato, N., Ikeuchi, M., and Yoshikawa, H. (2012).
Identification of substrain-specific mutations by mas-
sively parallel whole-genome resequencing of Syne-
chocystis sp. PCC 6803. DNA Research: An Inter-
national Journal for Rapid Publication of Reports on
Genes and Genomes, 19(1):67–79.
Karr, J. R., Sanghvi, J. C., Macklin, D. N., Arora, A., and
Covert, M. W. (2013). WholeCellKB: model organ-
ism databases for comprehensive whole-cell models.
Nucleic Acids Res., 41(Database issue):D787–792.
Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V.,
Jacobs, J. M., Bolival Jr., B., Assad-Garcia, N., Glass,
J. I., and Covert, M. W. (2012). A Whole-Cell Com-
putational Model Predicts Phenotype from Genotype.
Trends in Genetics, 150(2):389–401.
Klein, J., M
¨
unch, R., Biegler, I., Haddad, I., Retter, I., and
Jahn, D. (2009). Strepto-DB, a database for compara-
tive genomics of group A (GAS) and B (GBS) strepto-
CyanoFactoryKnowledgeBase&SyntheticBiology-APleaforHumanCuratedBio-databases
241