plication to diatom idenfication. In Proc. 4th IAPR
Intl. Conf. Graph Based Representations in Pattern
Recognition, pages 95–106.
Arkin, E. M., Bender, M. A., Demaine, E. D., Demaine,
M. L., Mitchell, J. S. B., Sethia, S., and Skiena, S. S.
(2004). When can you fold a map? Computational
Geometry: Theory and Applications, 29(1):166–195.
Balkom, D. J., Demaine, E. D., and Demaine, M. L. (2004).
Folding paper shopping bags. In Proceedings of the
14th Annual Fall Workshop on Computational Geom-
etry, pages 14–15. MIT, Cambridge.
Bern, M. and Hayes, B. (1996). The complexity of flat
origami. In Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 175–183,
Atlanta.
Berretti, S., Del Bimbo, A., and Pala, P. (2004). A graph edit
distance based on node merging. In Proceedings of the
ACM International Conference on Image and Video
Retrieval (CIVR), pages 464–472, Dublin, Ireland.
Cheong, O., Gudmundsson, J., Kim, H.-S., Schymura, D.,
and Stehn, F. (2009). Measuring the similarity of ge-
ometric graphs. In Experimental Algorithms, pages
101–112. Springer.
Clapper, B. (2008). Munkres algorithm for the assignment
problem ver.1.0.6.
Colannino, J., Damian, M., Hurtado, F., Langerman, S.,
Meijer, H., Ramaswami, S., Souvaine, D., and Tou-
ssaint, G. T. (2007). Efficient many-to-many point
matching in one dimension. Graphs and Combina-
torics, 23:169–178.
Demaine, E. and O’Rourke, J. (2007). Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, New York.
Demaine, E. D. and Demaine, M. L. (2001). Recent results
in computational origami. In Origami
3
: Proc. of the
3rd International Meeting of Origami Science, Math,
and Education, pages 3–16, Monterey, California.
Eiter, T. and Mannila, H. (1997). Distance measures for
point sets and their computation. Acta Informatica,
34(2):109–133.
Fei, H. and Huan, J. (2008). Structure feature selection
for graph classification. In Proceedings of the 17th
ACM conference on Information and knowledge man-
agement, pages 991–1000. ACM.
Gao, X., Xiao, B., and Tao, D. (2010). A survey of
graph edit distance. Pattern Analysis and Applica-
tions, 13:113–129.
Gascuel, O. (1997). Bionj: an improved version of the nj
algorithm based on a simple model of sequence data.
Molecular biology and evolution, 14(7):685–695.
Graham, R. L. (1987). A similarity measure for graphs. Los
Alamos Science, pages 114–121.
Gu, C. and Guibas, L. (2011). Distance between folded
objects. In Proceedings of the European Workshop on
Computational Geometry, pages 40–42.
Hodge, T., Jamie, M., and Cope, T. (2000). A myosin family
tree. Journal of Cell Science, 113(19):3353–3354.
Huson, D. H. and Bryant, D. (2006). Application of phylo-
genetic networks in evolutionary studies. Molecular
biology and evolution, 23(2):254–267.
Kuhn, H. W. (1955). The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly,
2(1-2):83–97.
Lang, R. J. (1996). A computational algorithm for origami
design. In Proceedings of the Twelfth Annual Sym-
posium on Computational Geometry, SCG ’96, pages
98–105, New York, NY, USA. ACM.
Lang, R. J. (2012). Origami Design Secrets: Mathematical
Methods for an Ancient Art. CRC Press.
Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8):707–710.
Liapi, K. A. (2002). Transformable architecture inspired
by the origami art: Computer visualization as a tool
for form exploration. In Proceedings of the 2002
Annual Conference of the Association for Computer
Aided Design In Architecture, pages 381–388.
McArthur, M. and Lang, R. J. (2013). Folding Paper: The
Infinite Possibilities of Origami. Tuttle Publishing,
Hong Kong.
Mitani, J. (2011). Oripa origami pattern editor.
http://mitani.cs.tsukuba.ac.jp/oripa.
Mohamad, M., Rappaport, D., and Toussaint, G. T. (2014).
Minimum many-to-many matchings for computing
the distance between two sequences. Graphs and
Combinatorics.
Munkres, J. (1957). Algorithms for the assignment and
transportation problems. Journal of the Society of In-
dustrial and Applied Mathematics, 5(1):32–38.
O’Rourke, J. (2011). How to Fold It: The Mathematics of
Linkages, Origami and Polyhedra. Cambridge Uni-
versity Press, New York.
Pach, J. (2004). Towards a Theory of Geometric Graphs.
No. 342. American Mathematical Society.
Post, O. and Toussaint, G. T. (2011). The edit distance as a
measure of perceived rhythmic similarity. Empirical
Musicology Review, 6(3):164–179.
Robles-Kelly, A. and Hancock, E. R. (2005). Graph edit dis-
tance from spectral seriation. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 27(3):365–378.
Tachi, T. (2010). Rigid-foldable structure using bidirection-
ally flat-foldable planar quadrilateral mesh. In Ad-
vances in Architectural Geometry, pages 87–102.
Wu, W. and You, Z. (2011). A solution for folding rigid tall
shopping bags. Proceedings of the Royal Society – A,
pages 1–14.
ADissimilarityMeasureforComparingOrigamiCreasePatterns
391