with unaligned input. For evaluation purposes, we
introduced a new synthetic database, which covers
many different document backgrounds, MRZ con-
tents and viewpoints (available on request). Saving
the time required for alignment, MRZ data can be ex-
tracted faster than with state-off-the-art mobile appli-
cations.
Our approach could be improved in various ways.
If more character training data becomes available, the
template matching could be replaced with a suitable
classifier. This would certainly help to improve full
MRZ reading results including runtime. Tracking the
MRZ should increase robustness, since more input
data would be available for the OCR stage. For prac-
tical reasons, slightly bent documents should also be
handled.
ACKNOWLEDGMENTS
This work is supported by Bundesdruckerei GmbH.
REFERENCES
´
Alvaro Gonzalez, Bergasa, L. M., Torres, J. J. Y., and
Bronte, S. (2012). Text location in complex images.
In ICPR, pages 617–620.
Bataineh, B., Abdullah, S. N. H. S., and Omar, K. (2011).
An adaptive local binarization method for document
images based on a novel thresholding method and dy-
namic windows. Pattern Recogn. Lett., 32(14):1805–
1813.
Donoser, M., Arth, C., and Bischof, H. (2007). Detect-
ing, tracking and recognizing license plates. In ACCV,
pages 447–456, Berlin, Heidelberg. Springer-Verlag.
Epshtein, B., Ofek, E., and Wexler, Y. (2010). Detecting
text in natural scenes with stroke width transform. In
CVPR, pages 2963–2970.
Fabrizio, J., Cord, M., and Marcotegui, B. (2009a). Text
extraction from street level images. In CMRT, pages
199–204.
Fabrizio, J., Marcotegui, B., and Cord, M. (2009b). Text
segmentation in natural scenes using toggle-mapping.
In ICIP, pages 2349–2352.
Hu, J., Kashi, R., and Wilfong, G. (1999). Document clas-
sification using layout analysis. In 1999. Proceedings
of the International Workshop on Database and Ex-
pert Systems Applications, pages 556–560.
ICAO (2008). Machine readable travel documents.
Kasar, T. and Ramakrishnan, A. G. (2012). Multi-script and
multi-oriented text localization from scene images. In
CBDAR, pages 1–14, Berlin, Heidelberg. Springer-
Verlag.
Liu, X., Lu, K., , and Wang, W. (2012). Effectively localize
text in natural scene images. In ICPR.
Liu, Z. and Sarkar, S. (2008). Robust outdoor text detection
using text intensity and shape features. In ICPR.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In BMVC, pages 36.1–36.10.
Merino-Gracia, C., Lenc, K., and Mirmehdi, M. (2012). A
head-mounted device for recognizing text in natural
scenes. In CBDAR, pages 29–41, Berlin, Heidelberg.
Springer-Verlag.
Minetto, R., Thome, N., Cord, M., Fabrizio, J., and Mar-
cotegui, B. (2010). Snoopertext: A multiresolution
system for text detection in complex visual scenes. In
ICIP, pages 3861–3864.
Minetto, R., Thome, N., Cord, M., Stolfi, J., Precioso, F.,
Guyomard, J., and Leite, N. J. (2011). Text detection
and recognition in urban scenes. In ICCV Workshops,
pages 227–234.
Mishra, A., Alahari, K., and Jawahar, C. V. (2012). Top-
down and bottom-up cues for scene text recognition.
In CVPR.
Neumann, L. and Matas, J. (2011). Text localization in
real-world images using efficiently pruned exhaustive
search. In ICDAR, pages 687–691. IEEE.
Neumann, L. and Matas, J. (2012). Real-time scene text
localization and recognition. In CVPR, pages 3538–
3545.
Pan, Y.-F., Hou, X., and Liu, C.-L. (2011). A hybrid ap-
proach to detect and localize texts in natural scene
images. IEEE Transactions on Image Processing,
20(3):800–813.
Saoi, T., Goto, H., and Kobayashi, H. (2005). Text detec-
tion in color scene images based on unsupervised clus-
tering of multi-channel wavelet features. In ICDAR,
pages 690–694. IEEE Computer Society.
Shafait, F., Keysers, D., and Breuel, T. (2008). Efficient
implementation of local adaptive thresholding tech-
niques using integral images. In SPIE DRR. SPIE.
Sun, Q., Lu, Y., and Sun, S. (2010). A visual attention based
approach to text extraction. In ICPR, pages 3991–
3995.
Tarjan, R. E. (1972). Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146–
160.
Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T.,
and Schmalstieg, D. (2010). Real-time detection
and tracking for augmented reality on mobile phones.
TVCG, 16(3):355–368.
Yi, C. and Tian, Y. (2011). Text string detection from nat-
ural scenes by structure-based partition and grouping.
IEEE Transactions on Image Processing, 20(9):2594–
2605.
Zhu, K.-h., Qi, F.-h., Jiang, R.-j., and Xu, L. (2007). Auto-
matic character detection and segmentation in natural
scene images. Journal of Zhejiang University SCI-
ENCE A (JZUS), 8(1):63–71.
Real-timeDetectionandRecognitionofMachine-ReadableZoneswithMobileDevices
87