Ensemble Learning Optimization for Diabetic Retinopathy Image Analysis

Hanan S. Alghamdi, Lilian Tang, Yaochu Jin

2015

Abstract

Ensemble Learning has been proved to be an effective solution to learning problems. Its success is mainly dependent on diversity. However, diversity is rarely evaluated and explicitly used to enhance the ensemble performance. Diabetic Retinopathy (DR) automatic detection is one of the important applications to support the health care services. In this research, some existing statistical diversity measures were utilized to optimize ensembles used to detect DR related signs. Ant Colony Optimization (ACO) algorithm is adopted to select the ensemble base models using various criteria. This paper evaluates several optimized and non-optimized ensemble structures used for vessel segmentation. The results demonstrate the necessity of adopting the ensemble learning and the advantage of ensemble optimization to support the DR related signs detection.

References

  1. Becker, C., and Rigamonti, R. (2013). KernelBoost?: Supervised Learning of Image Features For Classification.
  2. Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information Fusion, 6(1), 5-20. doi:10.1016/j.inffus.2004.04.004.
  3. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 8(3), 263-9. doi:10.1109/42.34715.
  4. Delibasis, K. K., Kechriniotis, A. I., Tsonos, C., and Assimakis, N. (2010). Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Computer Methods and Programs in Biomedicine, 100(2), 108-22. doi:10.1016/j.cmpb. 2010.03.004.
  5. Fraz, M. M., Remagnino, P., Hoppe, a, Uyyanonvara, B., Rudnicka, a R., Owen, C. G., and Barman, S. a. (2012). Blood vessel segmentation methodologies in retinal images--a survey. Computer Methods and Programs in Biomedicine, 108(1), 407-33. doi:10.1016/j.cmpb.2012.03.009.
  6. Goh, J. (2011). The Reading of Diabetic Retinopathy Images - An Evolutionary Approach, (June).
  7. Huynh, N. (2013). A FILTER BANK APPROACH TO AUTOMATE VESSEL EXTRACTION WITH APPLICATIONS. California State University.
  8. Jiang, X., Society, I. C., and Mojon, D. (2003). Adaptive Local Thresholding by Verification-Based Multithreshold Probing with Application to Vessel Detection in Retinal Images ae, 25(1), 131-137.
  9. Khan, M. I., Shaikh, H., and Mansuri, A. M. (2011). A Review of Retinal Vessel Segmentation Techniques And Algorithms, 2(5), 1140-1144.
  10. Liu, I., and Sun, Y. (1993). Recursive tracking of vascular networks in angiograms based on the detectiondeletion scheme. IEEE Transactions on Medical Imaging, 12(2), 334-41. doi:10.1109/42.232264.
  11. Marin, D., Aquino, A., Gegundez-Arias, M. E., and Bravo, J. M. (2011). A new supervised method for blood vessel segmentation in retinal images by using graylevel and moment invariants-based features. IEEE Transactions on Medical Imaging, 30(1), 146-58. doi:10.1109/TMI.2010.2064333.
  12. Niemeijer, M. (2006). Automatic Detection of Diabetic Retinopathy in Digital Fundus Photographs.
  13. Preethi, M., and Vanithamani, R. (2012). Review of Retinal Blood Vessel Detection Methods for Automated Diagnosis of Diabetic Retinopathy, 262- 265.
  14. Ricci, E., and Perfetti, R. (2007). Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 26(10), 1357-65. doi:10.1109/TMI.2007.898551.
  15. Richard O. Duda, Peter E. Hart, D. G. S. (2000). Patter Classification (Second Edi.). John Wiley and Sons, New York,.
  16. Schapire, R. E. (2003). Measures of Diversity in Classifier Ensembles, 181-207.
  17. Soares, J. V. B., Leandro, J. J. G., Cesar JĂșnior, R. M., Jelinek, H. F., and Cree, M. J. (2006). Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 25(9), 1214-22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16967806.
  18. Tolias, Y. a, and Panas, S. M. (1998). A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Transactions on Medical Imaging, 17(2), 263-73. doi:10.1109/42.700738.
  19. Vlachos, M., and Dermatas, E. (2010). Multi-scale retinal vessel segmentation using line tracking. Computerized Medical Imaging and Graphics?: The Official Journal of the Computerized Medical Imaging Society, 34(3), 213-27. doi:10.1016/j.compmedimag.2009.09.006.
  20. Xu, L., and Luo, S. (2010). A novel method for blood vessel detection from retinal images. Biomedical Engineering Online, 9, 14. doi:10.1186/1475-925X-9- 14.
  21. Zana, F., and Klein, J. C. (1999). A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Transactions on Medical Imaging, 18(5), 419-28. doi:10.1109/42.774169.
  22. Zana, F., and Klein, J. C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing?: A Publication of the IEEE Signal Processing Society, 10(7), 1010-9. doi:10.1109/ 83.931095.
  23. Zhang, B., Zhang, L., Zhang, L., and Karray, F. (2010). Retinal vessel extraction by matched filter with firstorder derivative of Gaussian. Computers in Biology and Medicine, 40(4), 438-45. doi:10.1016/j.comp biomed.2010.02.008.
Download


Paper Citation


in Harvard Style

S. Alghamdi H., Tang L. and Jin Y. (2015). Ensemble Learning Optimization for Diabetic Retinopathy Image Analysis . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 471-477. DOI: 10.5220/0005296604710477


in Bibtex Style

@conference{visapp15,
author={Hanan S. Alghamdi and Lilian Tang and Yaochu Jin},
title={Ensemble Learning Optimization for Diabetic Retinopathy Image Analysis},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={471-477},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005296604710477},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Ensemble Learning Optimization for Diabetic Retinopathy Image Analysis
SN - 978-989-758-089-5
AU - S. Alghamdi H.
AU - Tang L.
AU - Jin Y.
PY - 2015
SP - 471
EP - 477
DO - 10.5220/0005296604710477