distance surface reconstruction. Computer Graphics
Forum, 30(7):1993–2002.
Canelhas, D. R. (2012). Scene Representation, Registration
and Object Detection in a Truncated Signed Distance
Function Representation of 3D Space. PhD thesis,
¨
Orebro University.
Canelhas, D. R., Stoyanov, T., and Lilienthal, A. J.
(2013). Sdf tracker: A parallel algorithm for on-line
pose estimation and scene reconstruction from depth
images. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pages
3671–3676. IEEE.
Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,
Fright, W. R., McCallum, B. C., and Evans, T. R.
(2001). Reconstruction and representation of 3d ob-
jects with radial basis functions. In Proceedings of the
28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, pages 67–
76, New York, NY, USA. ACM.
Chen, X., Lin, Q., Kim, S., Pe
˜
na, J., Carbonell, J. G.,
and Xing, E. P. (2010). An efficient proximal-
gradient method for single and multi-task regression
with structured sparsity. CoRR, abs/1005.4717.
Duchon, J. (1977). Splines minimizing rotation-invariant
semi-norms in sobolev spaces. In Schempp, W. and
Zeller, K., editors, Constructive Theory of Functions
of Several Variables, volume 571 of Lecture Notes in
Mathematics, pages 85–100. Springer Berlin Heidel-
berg.
Dykstra, R. (1982). An Algorithm for Restricted Least
Squares Regression. Technical report, mathematical
sciences. University of Missouri-Columbia, Depart-
ment of Statistics.
Edelsbrunner, H. and M
¨
ucke, E. P. (1994). Three-
dimensional alpha shapes. ACM Trans. Graph.,
13(1):43–72.
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R.
(2004). Least angle regression. Annals of Statistics,
32:407–499.
Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Reg-
ularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
33(1):1–22.
Getreuer, P. (2012). Rudin-Osher-Fatemi Total Variation
Denoising using Split Bregman. Image Processing On
Line, 2:74–95.
Goldstein, T. and Osher, S. (2009). The split bregman
method for l1-regularized problems. SIAM J. Img.
Sci., 2(2):323–343.
Gomes, A., Voiculescu, I., Jorge, J., Wyvill, B., and
Galbraith, C. (2009). Implicit Curves and Sur-
faces: Mathematics, Data Structures and Algorithms.
Springer Publishing Company, Incorporated, 1st edi-
tion.
Guennebaud, G. and Gross, M. (2007). Algebraic point set
surfaces. ACM Trans. Graph., 26(3).
H
¨
agele, M. (2011). Wirtschaftlichkeitsanalysen neuartiger
Servicerobotik-Anwendungen und ihre Bedeutung f
¨
ur
die Robotik-Entwicklung.
Hirschm
¨
uller, H. (2011). Semi-global matching - motiva-
tion, developments and applications. In Fritsch, D.,
editor, Photogrammetric Week, pages 173–184. Wich-
mann.
Hughes, J., Foley, J., van Dam, A., and Feiner, S. (2014).
Computer Graphics: Principles and Practice. The
systems programming series. Addison-Wesley.
Kazhdan, M. and Hoppe, H. (2013). Screened poisson sur-
face reconstruction. ACM Trans. Graph., 32(3):29:1–
29:13.
Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel,
H.-P. (2003). Multi-level partition of unity implicits.
ACM Trans. Graph., 22(3):463–470.
Open Source Community (2014). Blender, open source
film production software. http://blender.org. Ac-
cessed: 2014-06-6.
Oztireli, C., Guennebaud, G., and Gross, M. (2009). Fea-
ture Preserving Point Set Surfaces based on Non-
Linear Kernel Regression. Computer Graphics Fo-
rum, 28(2):493–501.
Piegl, L. and Tiller, W. (1997). The NURBS Book. Mono-
graphs in Visual Communication. U.S. Government
Printing Office.
Rogers, D. F. (2001). Preface. In Rogers, D. F., editor,
An Introduction to NURBS, The Morgan Kaufmann
Series in Computer Graphics, pages xv – xvii. Morgan
Kaufmann, San Francisco.
Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear
total variation based noise removal algorithms. Phys.
D, 60(1-4):259–268.
Saad, Y. (2003). Iterative Methods for Sparse Linear Sys-
tems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition.
Sch
¨
olkopf, B. and Smola, A. J. (2001). Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, Cambridge, MA,
USA.
Tennakoon, R., Bab-Hadiashar, A., Suter, D., and Cao,
Z. (2013). Robust data modelling using thin plate
splines. In Digital Image Computing: Techniques and
Applications (DICTA), 2013 International Conference
on, pages 1–8.
Tibshirani, R. (1994). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288.
Wahba, G. (1990). Spline models for observational data,
volume 59 of CBMS-NSF Regional Conference Series
in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA.
Wendland, H. (1995). Piecewise polynomial, positive defi-
nite and compactly supported radial functions of mini-
mal degree. Advances in Computational Mathematics,
4(1):389–396.
Wendland, H. (2004). Scattered Data Approximation. Cam-
bridge University Press.
Wolff, D. (2013). OpenGL 4 Shading Language Cookbook,
Second Edition. EBL-Schweitzer. Packt Publishing.
Zach, C., Pock, T., and Bischof, H. (2007). A globally opti-
mal algorithm for robust tv-l1 range image integration.
In Computer Vision, 2007. ICCV 2007. IEEE 11th In-
ternational Conference on, pages 1–8.
Zhao, H., Oshery, S., and Fedkiwz, R. (2001). Fast surface
reconstruction using the level set method. In In VLSM
01: Proceedings of the IEEE Workshop on Variational
and Level Set Methods.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
304