ACKNOWLEDGEMENTS
The images in figures 2 are from (Gu et al., 2002) pa-
per and presentation file. Models are courtesy of the
AIM@SHAPE repository. Special thanks are given
to Danil Kirsanov for exact geodesic distance code,
to Shin Yoshizawa for parameterization code and to
the anonymous reviewers for comments and sugges-
tions. This study is supported by JSPS KAKENHI
(Grant Number 24300035).
REFERENCES
Bennis, C., V
´
ezien, J.-M., and Igl
´
esias, G. (1991). Piece-
wise surface flattening for non-distorted texture map-
ping. SIGGRAPH Comput. Graph., 25(4):237–246.
Cohen, J., Olano, M., and Manocha, D. (1998).
Appearance-preserving simplification. In Proceedings
of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, pages
115–122, New York, NY, USA. ACM.
Dey, T. K. (1994). A new technique to compute polygo-
nal schema for 2-manifolds with application to null-
homotopy detection. In Proceedings of the Tenth An-
nual Symposium on Computational Geometry, SCG
’94, pages 277–284, New York, NY, USA. ACM.
Dey, T. K., Fan, F., and Wang, Y. (2013). An efficient com-
putation of handle and tunnel loops via reeb graphs.
ACM Trans. Graph., 32(4):32:1–32:10.
Dey, T. K., Li, K., Sun, J., and Cohen-Steiner, D. (2008).
Computing geometry-aware handle and tunnel loops
in 3d models. ACM Trans. Graph., 27(3):45:1–45:9.
Dijkstra, E. W. (1959). A note on two problems in con-
nexion with graphs. NUMERISCHE MATHEMATIK,
1(1):269–271.
Erickson, J. and Har-Peled, S. (2002). Optimally cutting a
surface into a disk. In Proceedings of the eighteenth
annual symposium on Computational geometry, SCG
’02, pages 244–253, New York, NY, USA. ACM.
Erickson, J. and Whittlesey, K. (2005). Greedy optimal
homotopy and homology generators. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’05, pages 1038–1046,
Philadelphia, PA, USA. Society for Industrial and Ap-
plied Mathematics.
Floater, M. S. (1997). Parametrization and smooth ap-
proximation of surface triangulations. Comput. Aided
Geom. Des., 14:231–250.
Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry
images. ACM Trans. Graph., 21(3):355–361.
Hormann, K. and Greiner, G. (2000). Quadrilateral remesh-
ing. In Proceedings of Vision, Modeling and Vizual-
ization, 2000, pages 153–162.
Jin, M., Ding, N., and Yang, Y. (2013). Computing short-
est homotopic cycles on polyhedral surfaces with hy-
perbolic uniformization metric. Comput. Aided Des.,
45(2):113–123.
Kutz, M. (2006). Computing shortest non-trivial cycles on
orientable surfaces of bounded genus in almost lin-
ear time. In Proceedings of the Twenty-second An-
nual Symposium on Computational Geometry, SCG
’06, pages 430–438, New York, NY, USA. ACM.
Mitchell, J. S. B., Mount, D. M., and Papadimitriou, C. H.
(1987). The discrete geodesic problem. SIAM J. Com-
put., 16(4):647–668.
Patan
`
e, G., Spagnuolo, M., and Falcidieno, B. (2007). Fam-
ilies of cut-graphs for bordered meshes with arbitrary
genus. Graph. Models, 69(2):119–138.
Sander, P. V., Gortler, S. J., Snyder, J., and Hoppe,
H. (2002). Signal-specialized parametrization. In
Proceedings of the 13th Eurographics Workshop on
Rendering, EGRW ’02, pages 87–98, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.
Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H.
(2001). Texture mapping progressive meshes. In Pro-
ceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’01, pages 409–416, New York, NY, USA. ACM.
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J.,
and Hoppe, H. (2005). Fast exact and approximate
geodesics on meshes. ACM Trans. Graph., 24(3):553–
560.
Tutte, W. T. (1963). How to draw a graph. Proceedings of
The London Mathematical Society, s3-13:743–767.
Yoshizawa, S., Belyaev, A., and Seidel, H.-P. (2004). A
fast and simple stretch-minimizing mesh parameteri-
zation. In SMI ’04: Proceedings of the Shape Model-
ing International 2004, pages 200–208, Washington,
DC, USA. IEEE Computer Society.
APPENDIX
Given a triangle T with 2D planar coordinates
p
1
, p
2
, p
3
where p
i
= (s
i
,t
i
) and corresponding 3D co-
ordinates q
1
,q
2
,q
3
. Since the mapping is affine, its
partial derivatives are constant over s and t directions
and given by:
S
s
= ∂S/∂s = (q
1
(t
2
−t
3
) + q
2
(t
3
−t
1
) + q
3
(t
1
−t
2
))/2A
P
S
t
= ∂S/∂t = (q
1
(t
2
−t
3
) + q
2
(t
3
−t
1
) + q
3
(t
1
−t
2
))/2A
P
where A
P
denotes area of triangle (p
1
, p
2
, p
3
) in pla-
nar domain.
Let denote Γ(T) and γ(T ) are maximum and min-
imum lengths eigenvalues of Jacobian [S
s
,S
t
], repre-
sent the largest and smallest length obtained when
mapping unit vectors from planar domain to the sur-
face. The local stretch norms over a triangle T is
given by:
L
2
(T ) =
q
(Γ
2
+ γ
2
)/2 =
q
(S
2
s
+ S
2
t
)/2
We define norms over the entire mesh M = {T
i
}:
L
2
(M ) =
s
∑
T
i
∈M
(L
2
(T
i
)
2
A
T
i
)/
∑
T
i
∈M
A
T
i
where A
T
i
denotes area of triangle T
i
in 3D domain.
GRAPP2015-InternationalConferenceonComputerGraphicsTheoryandApplications
136