our modeling framework is more closer to the real-
world applications.
REFERENCES
Bascn, S. M., Rodrguez, J. A., Arroyo, S. L., Caballero,
A. F., and Lpez-Ferreras, F. (2010). An optimization
on pictogram identification for the road-sign recogni-
tion task using {SVMs}. Computer Vision and Image
Understanding, 114(3):373 – 383.
Cheng, K. and Tan, X. (2014). Sparse representations based
attribute learning for flower classification. Neurocom-
puting, 145(0):416 – 426.
Cirean, D., Meier, U., Masci, J., and Schmidhuber, J.
(2012). Multi-column deep neural network for traf-
fic sign classification. Neural Networks, 32(0):333 –
338. Selected Papers from {IJCNN} 2011.
Ciresan, D., Meier, U., Masci, J., and Schmidhuber, J.
(2011). A committee of neural networks for traffic
sign classification. In Neural Networks (IJCNN), The
2011 International Joint Conference on, pages 1918–
1921.
Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. (2009).
Describing objects by their attributes. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1778–1785.
Ferrari, V. and Zisserman, A. (2007). Learning visual at-
tributes. In Advances in Neural Information Process-
ing Systems.
Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and
Igel, C. (2013). Detection of traffic signs in real-world
images: The German Traffic Sign Detection Bench-
mark. In International Joint Conference on Neural
Networks, number 1288.
Lampert, C., Nickisch, H., and Harmeling, S. (2009).
Learning to detect unseen object classes by between-
class attribute transfer. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Confer-
ence on, pages 951–958.
Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2007). Ef-
ficient sparse coding algorithms. In Sch
¨
olkopf, B.,
Platt, J., and Hoffman, T., editors, Advances in Neural
Information Processing Systems 19, pages 801–808.
MIT Press.
Liu, H., Liu, Y., and Sun, F. (2014). Traffic sign recogni-
tion using group sparse coding. Information Sciences,
266(0):75 – 89.
Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez,
P., Gomez-Moreno, H., and Lopez-Ferreras, F. (2007).
Road-sign detection and recognition based on support
vector machines. Intelligent Transportation Systems,
IEEE Transactions on, 8(2):264–278.
Mogelmose, A., Trivedi, M., and Moeslund, T. (2012).
Vision-based traffic sign detection and analysis for in-
telligent driver assistance systems: Perspectives and
survey. Intelligent Transportation Systems, IEEE
Transactions on, 13(4):1484–1497.
Paclik, P., Novovicova, J., and Duin, R. P. W. (2006).
Building road sign classifiers using trainable similar-
ity measure. IEEE Transactions on Intelligent Trans-
portation Systems, 7(3):309–321. to appear.
Piccioli, G., Micheli, E. D., Parodi, P., and Campani, M.
(1996). A robust method for road sign detection and
recognition.
Rohrbach, M., Stark, M., Szarvas, G., Gurevych, I., and
Schiele, B. (2010). What helps where – and why? se-
mantic relatedness for knowledge transfer. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Russakovsky, O. and Fei-Fei, L. (2012). Attribute learning
in large-scale datasets. In Proceedings of the 11th Eu-
ropean Conference on Trends and Topics in Computer
Vision - Volume Part I, ECCV’10, pages 1–14, Berlin,
Heidelberg. Springer-Verlag.
Sermanet, P. and LeCun, Y. (2011). Traffic sign recogni-
tion with multi-scale convolutional networks. In Neu-
ral Networks (IJCNN), The 2011 International Joint
Conference on, pages 2809–2813.
Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C.
(2012). Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neu-
ral Networks, 32(0):323 – 332. Selected Papers from
{IJCNN} 2011.
Sun, Z.-L., Wang, H., Lau, W.-S., Seet, G., and Wang, D.
(2014). Application of bw-elm model on traffic sign
recognition. Neurocomputing, 128(0):153 – 159.
Wang, G., Ren, G., Wu, Z., Zhao, Y., and Jiang, L. (2013).
A hierarchical method for traffic sign classification
with support vector machines. In Neural Networks
(IJCNN), The 2013 International Joint Conference on,
pages 1–6.
Zaklouta, F. and Stanciulescu, B. (2011). Warning traffic
sign recognition using a hog-based k-d tree. In In-
telligent Vehicles Symposium (IV), 2011 IEEE, pages
1019–1024.
Zaklouta, F. and Stanciulescu, B. (2014). Real-time traf-
fic sign recognition in three stages. Robotics and Au-
tonomous Systems, 62(1):16 – 24. New Boundaries of
Robotics.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
96