New Media, +cd edition.
Battiato, S., Mancuso, M., Bosco, A., and Guarnera, M.
(2001). Psychovisual and statistical optimization of
quantization tables for dct compression engines. In
Proc. 11th Int. Conf. Image Analysis and Processing.
Beghdadi, A., Larabi, M., Bouzerdoum, A., and
K.M. Iftekharuddin, K. M. (2013). A survey of per-
ceptual image processing methods. In Signal Process-
ing: Image Communication, 28, 811-831.
Braquelaire, J. and Brun, L. (1997). Comparison and opti-
mization of methods of color image quantization. In
IEEE Trans.on Image Processing, 6 1048-052.
Braun, R. P., Rabinovitz, H., Oliviero, M., Kopf, A., and
Saurat, J. (2005). Dermoscopy of pigmented skin le-
sions. In Journal of the American Academy of Derma-
tology, 52 (1), 109-121.
Brun, L. and Trmeau, A. (2002). Digital color imaging
handbook, chapter 9: Color quantization. In Electrical
and Applied Signal Processing. CRC Press.
Bruni, V., Crawford, A., Kokaram, A., and Vitulano, D.
(2013). Semi-transparent blotches removal from sepia
images exploiting visibility laws. In Signal Image and
Video Processing, 7(1), 11-26.
Bruni, V., Crawford, A., and Vitulano, D. (2006). Visibility
based detection of complicated objects: a case study.
In Proc. of IEE CVMP 06.
Burger, W. and Burge, M. (2009). Principles of Digital Im-
age Processing. Undergraduate Topics in Computer
Science, Springer-Verlag.
Celebi, M. (2009). An effective color quantization method
based on the competitive learning paradigm. In Proc.
of Int. Conf. on Image Proc., Computer Vision and
Pattern Rec.
Celebi, M., Wen, Q., Hwang, S., and Schaefer, G. (2013).
Color quantization of dermoscopy images using the k-
means clustering algorithm. In Color Medical Image
Analysis, 87-107. Celebi, M. E., Schaefer, G. Eds.,
Lecture Notes in Computational Vision and Biome-
chanics, 6, Springer.
Celebi, M. E. (2011). Improving the performance of k-
means for color quantization. In Image and Vision
Computing 29, 260-271.
Celebi, M. E., Hwang, S., and Wen, Q. (2014). Color
quantization using the adaptive distributing units al-
gorithm. In Imaging Science Journal 62(2), 80-91.
Cheng, S. and Yang, C. (2001). Fast and novel tech-
nique for color quantization using reduction of color
space dimensionality. In Pattern Recognition Letters,
22(8):845-856. Elsevier.
Frazor, R. and Geisler, W. (2006). Local luminance and
contrast in natural in natural images, 46. In Vision
Research.
Gonzalez, R. C. and Woods, R. E. (2002). Digital Image
Processing. Prentice Hall, 2nd edition.
Heckbert, P. (1982). Color image quantization for frame
buffer display. In Proc. ACM SIGGRAPH ’82 16(3),
297-307.
Hruschka, E., Campello, R., Leon, A. F. F. P., and de Car-
valho, A. (2009). A survey of evolutionary algorithms
for clustering. In IEEE Trans. on Systems, Man, and
Cybernetics, Part C: Applications and Reviews VOL.
39, 2, pp. 133-155.
Korotkov, K. and Garcia, R. (2012). Computerized analy-
sis of pigmented skin lesions: A review. In Artificial
Intelligence in Medicine, 56, 69-90.
Kuriki, I. (2004). Testing the possibility of average-color
perception from multi-colored patterns. In Optical Re-
view, 11 (4), 249-257.
Mallat, S. (1998). A wavelet tour of signal processing. Aca-
demic Press.
Monte, V., Frazor, R., Bonin, V., Geisler, W., and Corandin,
M. (2005). Independence of luminance and contrast
in natural scenes and in the early visual system 8(12).
In Nature Neuroscience.
Moorthy, A. and Bovik, A. (2009). Visual importance pool-
ing for image quality assessment. In IEEE Journal on
Special Topics in Sig. Proc., 3(2).
Palomo, E. and Domnguez, E. (2014). Hierarchical color
quantization based on self-organization. In Journal of
Mathematical Imaging and Vision, 49,1-19.
Plataniotis, K. and Venetsanopoulos, N. (2000). Color im-
age processing and applications. In Communications
of the ACM, 34, 30-44.
Ramella, G. and di Baja, G. S. (2013). A new technique
for color quantization based on histogram analysis and
clustering. In International Journal Pattern Recogni-
tion and Artificial Intelligence, 27 (3).
Rosch, E. (1978). Cognition and categorization, principles
of categorization. In Rosch, E., Lloyd, B.B. Ed., Erl-
baum, Hillsdale.
Schaefer, G. and Nolle, L. (2014). A hybrid color quantiza-
tion algorithm incorporating a human visual percep-
tion model. In Computational Intelligence.
Wallace, G. (1991). The jpeg still picture compression stan-
dard. In Communications of the ACM, 34, 30-44.
Weeks, A. R. (1998). Fundamentals of electronic image
processing. In SPIE-The International Society for Op-
tical Engineering, Bellingham, Washington USA.
Winkler, S. (2005). Digital Video Quality, Vision Models
and Metrics. Wiley.
Wu, X. (1991). Efficient statistical computations for opti-
mal color quantization. In Graphics gems. Academic
Press.
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
330