REFERENCES
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpi-
ani, A. (1997). Predictability in the large: an extension
of the concept of Lyapunov exponent. J. Physics A:
Mathematical and General, 30(1):1–26.
Balachandar, S. and Maxey, M. R. (1989). Methods for
evaluating fluid velocities in spectral simulations of
turbulence. J. Computational Physics, 83(1):96–125.
Balsa Rodriguez, M., Gobbetti, E., Iglesias Guiti
´
an, J.,
Makhinya, M., Marton, F., Pajarola, R., and Suter,
S. (2013). A survey of compressed GPU-based di-
rect volume rendering. In Eurographics 2013 - STARs,
pages 117–136.
Bruckschen, R., Kuester, F., Hamann, B., and Joy, K. I.
(2001). Real-time out-of-core visualization of parti-
cle traces. In Proc. IEEE 2001 Symp. on Parallel and
Large-Data Visualization and Graphics, pages 45–50.
Camp, D., Garth, C., Childs, H., Pugmire, D., and Joy, K.
(2011). Streamline integration using MPI-hybrid par-
allelism on a large multicore architecture. IEEE Trans.
Vis. Comput. Graphics, 17(11):1702–1713.
Dormand, J. R. and Prince, P. J. (1980). A family of em-
bedded Runge-Kutta formulae. J. Computational and
Applied Mathematics, 6(1):19–26.
Eiter, T. and Mannila, H. (1994). Computing discrete
Fr
`
echet distance. Technical Report CD-TR 94/64,
Technische Universit
¨
at Wien.
Ellsworth, D., Green, B., and Moran, P. (2004). Interactive
terascale particle visualization. In IEEE Visualization,
pages 353–360.
Fout, N. and Ma, K.-L. (2012). An adaptive prediction-
based approach to lossless compression of floating-
point volume data. IEEE Trans. Vis. Comput. Graph-
ics, 18(12):2295–2304.
Fout, N. and Ma, K.-L. (2013). Fuzzy volume rendering.
IEEE Trans. Vis. Comput. Graphics, 18(12):2335–
2344.
Frigo, M. and Johnson, S. G. (2005). The design and im-
plementation of FFTW3. Proc. IEEE, 93(2):216–231.
Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005). Loss-
less compression of predicted floating-point geometry.
Computer Aided Design, 37(8):869–877.
Lane, D. A. (1994). UFAT—a particle tracer for time-
dependent flow fields. In IEEE Visualization, pages
257–264.
Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post,
F. H., and Weiskopf, D. (2004). The state of the art
in flow visualization: Dense and texture-based tech-
niques. Computer Graphics Forum, 23(2):203–221.
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C.,
Burns, R., Chen, S., Szalay, A., and Eyink, G. (2008).
A public turbulence database cluster and applications
to study Lagrangian evolution of velocity increments
in turbulence. J. Turbulence, 9:N31.
Lindstrom, P. and Isenburg, M. (2006). Fast and efficient
compression of floating-point data. IEEE Trans. Vis.
Comput. Graphics, 12(5):1245–1250.
McLoughlin, T., Laramee, R. S., Peikert, R., Post, F. H., and
Chen, M. (2010). Over two decades of integration-
based, geometric flow visualization. Computer
Graphics Forum, 29(6):1807–1829.
Nouanesengsy, B., Lee, T.-Y., and Shen, H.-W. (2011).
Load-balanced parallel streamline generation on large
scale vector fields. IEEE Trans. Vis. Comput. Graph-
ics, 17(12):1785–1794.
Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.-Y., Shen,
H.-W., Kendall, W., and Huang, J. (2011). A study
of parallel particle tracing for steady-state and time-
varying flow fields. In Parallel Distributed Processing
Symposium (IPDPS), pages 580–591.
Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and
Doleisch, H. (2003). The state of the art in flow visu-
alisation: Feature extraction and tracking. Computer
Graphics Forum, 22(4):775–792.
Pugmire, D., Childs, H., Garth, C., Ahern, S., and Weber,
G. H. (2009). Scalable computation of streamlines on
very large datasets. In Proc. Conf. on High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 16:1–16:12.
Rovelstad, A. L., Handler, R. A., and Bernard, P. S. (1994).
The effect of interpolation errors on the Lagrangian
analysis of simulated turbulent channel flow. J. Com-
putational Physics, 110(1):190–195.
Sayood, K. (2005). Introduction to Data Compression.
Morgan Kaufmann Publ. Inc., 3rd edition.
Teitzel, C., Grosso, R., and Ertl, T. (1997). Efficient and
reliable integration methods for particle tracing in un-
steady flows on discrete meshes. In Visualization in
Scientific Computing, pages 31–41.
Treib, M., B
¨
urger, K., Reichl, F., Meneveau, C., Szalay,
A., and Westermann, R. (2012). Turbulence visual-
ization at the terascale on desktop PCs. IEEE Trans.
Vis. Comput. Graphics, 18(12):2169–2177.
Yeung, P. K. and Pope, S. B. (1988). An algorithm for
tracking fluid particles in numerical simulations of
homogeneous turbulence. J. Computational Physics,
79(2):373–416.
Yu, H., Wang, C., and Ma, K.-L. (2007). Parallel hierar-
chical visualization of large time-varying 3D vector
fields. In Proc. ACM/IEEE Conf. on Supercomputing,
pages 24:1–24:12.
Zheng, Z., Xu, W., and Mueller, K. (2010). VDVR: Veri-
fiable volume visualization of projection-based data.
IEEE Trans. Vis. Comput. Graphics, 16(6):1515–
1524.
IVAPP2015-InternationalConferenceonInformationVisualizationTheoryandApplications
288