Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2014b). Improving the White
patch method by subsampling. In Image Processing
(ICIP), 2014 21st IEEE International Conference on,
pages 605–609. IEEE.
Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2015). Color Cat: Remember-
ing Colors for Illumination Estimation. Signal Pro-
cessing Letters, IEEE, 22(6):651–655.
Buchsbaum, G. (1980). A spatial processor model for object
colour perception. Journal of The Franklin Institute,
310(1):1–26.
Cardei, V. C., Funt, B., and Barnard, K. (2002). Estimating
the scene illumination chromaticity by using a neural
network. Journal of the Optical Society of America A,
19(12):2374–2386.
Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color
constancy with spatio-spectral statistics. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
34(8):1509–1519.
Cheng, D., Prasad, D., and Brown, M. S. (2014a). On Illu-
minant Detection.
Cheng, D., Prasad, D. K., and Brown, M. S. (2014b). Il-
luminant estimation for color constancy: why spatial-
domain methods work and the role of the color distri-
bution. Journal of the Optical Society of America A,
31(5):1049–1058.
Ciurea, F. and Funt, B. (2003). A large image database
for color constancy research. In Color and Imaging
Conference, volume 2003, pages 160–164. Society for
Imaging Science and Technology.
Deng, Z., Gijsenij, A., and Zhang, J. (2011). Source camera
identification using Auto-White Balance approxima-
tion. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, pages 57–64. IEEE.
Ebner, M. (2007). Color Constancy. The Wiley-IS&T Se-
ries in Imaging Science and Technology. Wiley.
Finlayson, G. D., Hordley, S. D., and Morovic, P. (2005).
Colour constancy using the chromagenic constraint.
In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 1079–1086. IEEE.
Finlayson, G. D., Hordley, S. D., and Tastl, I. (2006). Gamut
constrained illuminant estimation. International Jour-
nal of Computer Vision, 67(1):93–109.
Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and
colour constancy. In Color and Imaging Conference,
volume 2004, pages 37–41. Society for Imaging Sci-
ence and Technology.
Fredembach, C. and Finlayson, G. (2008). Bright chroma-
genic algorithm for illuminant estimation. Journal of
Imaging Science and Technology, 52(4):40906–1.
Funt, B. and Shi, L. (2010). The rehabilitation of MaxRGB.
In Color and Imaging Conference, volume 2010,
pages 256–259. Society for Imaging Science and
Technology.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE.
Gijsenij, A. and Gevers, T. (2007). Color Constancy us-
ing Natural Image Statistics. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011).
Computational color constancy: Survey and exper-
iments. Image Processing, IEEE Transactions on,
20(9):2475–2489.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2012). Im-
proving color constancy by photometric edge weight-
ing. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(5):918–929.
Hordley, S. D. and Finlayson, G. D. (2004). Re-evaluating
colour constancy algorithms. In Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th Interna-
tional Conference on, volume 1, pages 76–79. IEEE.
Japkowicz, N. and Shah, M. (2011). Evaluating Learning
Algorithms. Cambridge University Press.
Joze, H. R. V. and Drew, M. S. (2012). Exemplar-Based
Colour Constancy. In British Machine Vision Confer-
ence, pages 1–12.
Joze, H. R. V., Drew, M. S., Finlayson, G. D., and Rey, P.
A. T. (2012). The Role of Bright Pixels in Illumina-
tion Estimation. In Color and Imaging Conference,
volume 2012, pages 41–46. Society for Imaging Sci-
ence and Technology.
L. Shi, B. F. (2014). Re-processed Version of the Gehler
Color Constancy Dataset of 568 Images.
Land, E. H. (1977). The retinex theory of color vision. Sci-
entific America.
Lynch, S. E., Drew, M. S., and Finlayson, k. G. D. (2013).
Colour Constancy from Both Sides of the Shadow
Edge. In Color and Photometry in Computer Vision
Workshop at the International Conference on Com-
puter Vision. IEEE.
Van De Weijer, J., Gevers, T., and Gijsenij, A. (2007a).
Edge-based color constancy. Image Processing, IEEE
Transactions on, 16(9):2207–2214.
Van De Weijer, J., Schmid, C., and Verbeek, J. (2007b). Us-
ing high-level visual information for color constancy.
In Computer Vision, 2007. ICCV 2007. IEEE 11th In-
ternational Conference on, pages 1–8. IEEE.
Vassilvitskii, S. and University, S. (2007). K-means: Algo-
rithms, Analyses, Experiments. Stanford University.
Zhang, B. and Batur, A. (2014). Illumination Estima-
tion Using Natural Scene Statistics. US Patent App.
14/188,670.
ColorDog-GuidingtheGlobalIlluminationEstimationtoBetterAccuracy
135