Table 3: Different performance measures for different color
constancy methods on the original GreyBall dataset (Ciurea
and Funt, 2003) (lower is better).
method mean (
◦
) median (
◦
) proposed
do nothing 8.28 6.70 1.6209
Low-level statistics-based methods
GW 7.87 6.97 1.8017
WP 6.80 5.30 1.5385
SoG 6.14 5.33 1.5732
general GW 6.14 5.33 1.5732
GE1 5.88 4.65 1.5013
GE2 6.10 4.85 1.5343
Learning based methods
PG 7.07 5.81 1.6478
EG 6.81 5.81 1.6616
IG 6.93 5.80 1.6510
NIS 5.19 3.93 1.3369
EB 4.38 3.43 1.1924
CM 9.78 8.65 1.9069
ACKNOWLEDGEMENTS
This research has been partially supported by the Eu-
ropean Union from the European Regional Develop-
ment Fund by the project IPA2007/HR/16IPO/001-
040514 ”VISTA - Computer Vision Innovations for
Safe Traffic.”
REFERENCES
Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2013). Using the Random
Sprays Retinex Algorithm for Global Illumination Es-
timation. In Proceedings of The Second Croatian
Computer Vision Workshop (CCVW 2013), pages 3–7.
University of Zagreb Faculty of Electrical Engineer-
ing and Computing.
Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2014a). Color Rabbit: Guid-
ing the Distance of Local Maximums in Illumina-
tion Estimation. In Digital Signal Processing (DSP),
2014 19th International Conference on, pages 345–
350. IEEE.
Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2014b). Improving the White
patch method by subsampling. In Image Processing
(ICIP), 2014 21st IEEE International Conference on,
pages 605–609. IEEE.
Bani
´
c, N. and Lon
ˇ
cari
´
c, S. (2015). Color Cat: Remember-
ing Colors for Illumination Estimation. Signal Pro-
cessing Letters, IEEE, 22(6):651–655.
Buchsbaum, G. (1980). A spatial processor model for object
colour perception. Journal of The Franklin Institute,
310(1):1–26.
Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color
constancy with spatio-spectral statistics. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
34(8):1509–1519.
Cheng, D., Prasad, D., and Brown, M. S. (2014a). On Illu-
minant Detection.
Cheng, D., Prasad, D. K., and Brown, M. S. (2014b). Il-
luminant estimation for color constancy: why spatial-
domain methods work and the role of the color distri-
bution. Journal of the Optical Society of America A,
31(5):1049–1058.
Ciurea, F. and Funt, B. (2003). A large image database
for color constancy research. In Color and Imaging
Conference, volume 2003, pages 160–164. Society for
Imaging Science and Technology.
Ebner, M. (2007). Color Constancy. The Wiley-IS&T Se-
ries in Imaging Science and Technology. Wiley.
Finlayson, G. D., Hordley, S. D., and Morovic, P. (2005).
Colour constancy using the chromagenic constraint.
In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 1079–1086. IEEE.
Finlayson, G. D., Hordley, S. D., and Tastl, I. (2006). Gamut
constrained illuminant estimation. International Jour-
nal of Computer Vision, 67(1):93–109.
Finlayson, G. D. and Schaefer, G. (2001). Solving for
colour constancy using a constrained dichromatic re-
flection model. International Journal of Computer Vi-
sion, 42(3):127–144.
Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and
colour constancy. In Color and Imaging Conference,
volume 2004, pages 37–41. Society for Imaging Sci-
ence and Technology.
Fredembach, C. and Finlayson, G. (2008). Bright chroma-
genic algorithm for illuminant estimation. Journal of
Imaging Science and Technology, 52(4):40906–1.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE.
Gijsenij, A. and Gevers, T. (2007). Color Constancy us-
ing Natural Image Statistics. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8.
Gijsenij, A., Gevers, T., and Lucassen, M. P. (2009). Per-
ceptual analysis of distance measures for color con-
stancy algorithms. JOSA A, 26(10):2243–2256.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011).
Computational color constancy: Survey and exper-
iments. Image Processing, IEEE Transactions on,
20(9):2475–2489.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2012). Im-
proving color constancy by photometric edge weight-
ing. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(5):918–929.
Hordley, S. D. and Finlayson, G. D. (2004). Re-evaluating
colour constancy algorithms. In Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th Interna-
tional Conference on, volume 1, pages 76–79. IEEE.
Joze, H. R. V. and Drew, M. S. (2012). Exemplar-Based
Colour Constancy. In British Machine Vision Confer-
ence, pages 1–12.
Judd, D. B., MacAdam, D. L., Wyszecki, G., Budde, H.,
Condit, H., Henderson, S., and Simonds, J. (1964).
Spectral distribution of typical daylight as a function
VISAPP2015-InternationalConferenceonComputerVisionTheoryandApplications
142